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ABSTRACT 

 

Seed Pool Dynamics of a Great Basin Sagebrush Community in the Context of 

Restoration 

 
by 
 
 

Kristen M. Pekas, Master of Science 
 

Utah State University, 2010 
 
 

Major Professor:  Eugene W. Schupp 
Department:  Wildland Resources 
 
 
 Restoration of Great Basin sagebrush communities is often attempted without 

understanding the potential impacts of either restoration treatments on the seed pool or 

the seed pool on restoration efforts.  In addition, few studies have examined seed pools of 

the Great Basin and the role of vegetation in structuring seed pool communities.  I 

evaluated soil seed pool dynamics of a Great Basin sagebrush community in a restoration 

context.   

In Chapter 1, I determined the relationship between the compositions of the seed 

pool and aboveground vegetation and the effect of shrubs (microhabitat effects) and 

perennial bunchgrass cover (community phase effects) on the seed pool community 

composition, seed density, and seed pool species richness.  To evaluate the relationship 

between the two communities and the effects of microhabitat and community phase, the 

aboveground vegetation and the soil seed pools of different community phases and 

microhabitats were sampled prior to restoration.  Similarity and distance metrics and non-
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metric multidimensional scaling (NMDS) were used to asses the relationship between the 

two communities.  NMDS and analysis of variance (ANOVA) were used to determine the 

effects of aboveground community phase and microhabitat on the seed pool community.  

Results suggest that the relationship between the aboveground vegetation and seed pool 

community compositions varied according to the organizational level used for vegetation.  

In addition, microhabitat and community phase did influence seed density but not species 

richness.   

 I sought to evaluate the effects of restoration treatments on the seed pool 

community in Chapter 3.  To assess the impacts of restoration treatments, the seed pool 

community before and after treatments was censused.  NMDS of the seed pool 

community and ANOVA on dominant species of the seed pool were performed to 

determine treatment effects.  Results from this research suggest seed pool community 

composition and seed density varied temporally and spatially.  Tebuthiuron and Plateau 

may have altered community composition whereas prescribed burn affected seed density.  

This research is applicable for land managers by helping determine the most effective 

restoration treatment, which will include effects on the seed pool. 

 (127 pages) 
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CHAPTER 1 

INTRODUCTION 

 
 Great Basin sagebrush communities are threatened by the invasion of cheatgrass, 

an exotic, annual grass that was introduced to the U.S. from Eurasia in the late 1800s and 

was recognized in the Intermountain West by 1900 (Mack and Pyke, 1983; Young and 

Blank, 1995).  Following wildfire, cheatgrass has a competitive advantage over native 

species; cheatgrass germinates earlier and grows faster, depleting the resources that are 

available after fire (Melgoza and Nowak, 1991).  Cheatgrass densities increase and by 

early to mid-summer the grass desiccates providing an abundant supply of fine fuels 

required to spread fires (Knapp, 1996).  As a result, the fire frequency increases, creating 

more disturbed landscapes that cheatgrass can invade (Young and Blank, 1995).  Native 

grasses are not adapted to this increased fire frequency and can not compete with 

cheatgrass (Knapp, 1996; Brooks and Pyke, 2001). 

 Wildfires are not exactly rare in the Great Basin, historically occurring every 30 

to 100 years (Wright and Bailey, 1982; Brooks and Pyke, 2001).  However, in some areas 

of the Great Basin fire frequency has now increased to 5 year intervals and has become 

too common for many natives to survive or reestablish (Whisenant, 1990; Knapp, 1996; 

Brooks and Pyke, 2001).  Even though natives usually struggle to survive or reestablish 

after fire when cheatgrass is present on a site (Knapp, 1996), fire, in addition to other 

forms of disturbance is used in restoration.  Disturbances may activate the seed pool of 

some desirable species (Bakker et al., 1996a).  The seed pool, or seed bank, is the 

collection of all viable seeds in the soil.  Restoration treatments such as fire, herbicide 

and mowing reduce shrub abundance making resources more available.  Therefore, the 
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seed pool may be an important contributor to the recovery of vegetation following 

restoration treatments, such as serving as a source of new propagules (Nishihiro et al., 

2006). 

Seed pools of the Great Basin are poorly understood as is their contribution to the 

aboveground vegetation, but numerous studies have shown that these seed pools vary 

both spatially and temporally (Thompson and Grime, 1979; Coffin and Lauenroth, 1989; 

Kemp, 1989).  Great Basin seed pools consist of fewer annuals and more perennials than 

do hot desert seed pools (Kemp, 1989; Guo et al., 1999).  Communities dominated by 

annual species have a higher aboveground-belowground similarity than communities 

dominated by perennial species (Thompson and Grime, 1979; Ungar and Woodell, 1993; 

Milberg 1995; Bakker et al., 1996b; Osem et al., 2006).  A comparison of aboveground-

belowground similarity among vegetation types shows that grasslands, including desert 

grasslands, have higher similarity than forest and wetland communities (Hopfensperger, 

2007).   

The aboveground vegetation can also influence the distribution of seeds.  The 

distribution of seeds within desert seed pools is spatially variable, but seeds are generally 

more abundant under shrubs.  Microhabitats beneath shrubs tend to have higher seed 

densities than shrub interspaces due to seeds settling close to the mother plant (Nelson 

and Chew, 1977; Guo et al., 1998; Marone et al., 2004; Shaukat and Siddiqui, 2004).  

Shrubs can decrease wind velocity which traps seeds beneath shrubs (Bullock and Moy, 

2004).  Litter that has accumulated beneath shrubs can also capture seeds that are being 

redistributed from interspaces (Chambers and MacMahon, 1994).   

Research examining the effects of restoration treatments on the seed pool is 
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lacking, though restoration can potentially alter the seed pool.  For example, wildfire can 

reduce seed densities (Hassen and West, 1986), but the effects of prescribed burn on the 

seed pool are not well documented.  The seed pool will be evaluated within the 

framework of SageSTEP (Sagebrush Treatment Evaluation Project), a regional scale 

restoration and fuels reduction experiment evaluating the effectiveness of various 

treatments (prescribed burn, mowing, and herbicide).  The major goal of this project is to 

determine community thresholds between healthy and unhealthy sagebrush communities 

within the Great Basin.  Sites are located throughout the Great Basin, and plots within 

each site represent different restoration treatments.  Subplots within each plot were 

chosen based on varying levels of native bunchgrass cover.  High native bunchgrass 

cover (greater than 19 percent) subplots were considered phase 1 communities, 

intermediate native bunchgrass cover subplots were considered phase 2 communities, and 

low native bunchgrass cover (less than 10 percent) subplots were considered phase 3 

communities.  The three community phases allow for determining at which native bunch 

grass cover a community can restore itself versus requiring active, expensive restoration 

efforts, such as seeding.  Supplemental seeding has varying degrees of success, and 

vegetation recovery from the seed pool may be as effective (Young et al., 1994; Eiswerth 

and Shonkwiler, 2006; Floyd et al., 2006; Robichaud et al., 2006; Jessop and Anderson, 

2007).   

 The objective of this research was to evaluate soil seed pool dynamics of a Great 

Basin sagebrush community in a restoration context.  I specifically examined the 

influences of the aboveground vegetation on the seed pool community and seed 

distributions.  I also investigated the effects of restoration treatments on the seed pool as 
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well as determined if the pre-treatment seed pool or aboveground vegetation is more 

similar to the vegetation following restoration. 

 Results from this research have both theoretical and applied implications.  

Theoretically, this research evaluates how factors aboveground influence the seed pool.  

Results are also applicable for land managers to help determine the most effective 

restoration treatment, which will include effects on the seed pool. 
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CHAPTER 2 

INFLUENCE OF ABOVEGROUND VEGETATION ON SEED POOL 

COMPOSITION AND DISTRIBUTION IN A GREAT BASIN  

SAGEBRUSH COMMUNITY 

 
Abstract 
 

The influence of aboveground vegetation on seed density, species richness, and 

seed pool community composition was studied to understand factors determining seed 

spatial patterns and seed pool species composition in a Great Basin sagebrush 

community.  Specifically, the relationship between the seed pool and aboveground 

vegetation and the effect of microhabitat (shrub interspace or beneath shrub) and 

aboveground community phase (high or low perennial bunchgrass cover) on the seed 

pool were assessed.  The seed pool and aboveground vegetation differed in their most 

dominant species which resulted in dissimilar species compositions as determined by 

Sørensen’s similarity index and Bray-Curtis distance.  In contrast, comparing the seed 

pool species composition to the aboveground vegetation structure (functional groups) 

using non-metric multidimensional scaling (NMDS) revealed that there was a 

correspondence between the two communities.  Shrub seed densities were higher beneath 

shrubs.  Communities with higher perennial bunchgrass cover aboveground (phase 1 

communities) yielded higher seed densities than those communities with lower perennial 

bunchgrass cover (phase 3 communities).  Microhabitat or community phase did not 

explain variation in species richness, but richness, as well as seed density, was spatially 

variable.  Therefore, the aboveground vegetation did influence seed densities but not 

species richness, and the similarity between the seed pool and aboveground vegetation 
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varied depending on the aboveground organizational level used in comparisons. 

 
1.  Introduction 
 

The majority of Great Basin species rely on seeds for propagation; however, seed 

pools of this desert are poorly understood (Kemp, 1989).  Seed pools may help re-

establish species that have become locally extinct aboveground.  Evaluations of North 

American desert seed pools suggest that those of the Great Basin consist of fewer annual 

and more perennial species than do hot desert seed pools (Kemp, 1989; Guo et al., 1999).  

Although maximum seed densities are generally similar among the North American 

deserts, there are some areas of the Great Basin that appear to have very small seed pools 

(Hassan and West, 1986).  

According to Jurado and Flores (2005), annual species are more likely than 

perennial species to form persistent seed pools because they tend to produce dormant 

seeds.  This strategy allows the seeds to wait for the proper germination cues which may 

increase the chance of establishment and survival.  However, a long-term seed pooling 

strategy may be difficult for annuals to achieve because of seed reductions caused by 

continuous germination and granivory (Kigel, 1995).  Due to the nature of perennial 

species, seeds are less likely to be dormant, and therefore, seed pools tend to be transient.  

Species that form transient seed pools are at risk of becoming locally extinct, especially if 

seed input is limited (O’Connor, 1991).  Seed inputs can be limited by a number of 

factors, such as invasive species which may cause native perennial species to produce 

fewer seeds and die prematurely if the density of the invader is high (Vilà and Gimeno, 

2007). 

The invasion of cheatgrass has altered the structure and composition of Great 
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Basin seed pools. Studies examining seed pools of degraded sagebrush communities have 

shown shifts to greater annual seed abundance with cheatgrass invasion (Young and 

Evans, 1975; Humphrey and Schupp, 2001).  Even in systems that are not considered to 

be dominated by cheatgrass, introduced species can still account for 20 percent of the 

total number of seeds in the seed pool (Guo et al., 1999).   

The relationship between the seed pool and aboveground vegetation is not well 

understood in Great Basin sagebrush communities.  Plant communities dominated by 

perennial species usually have relatively low aboveground-belowground similarities, 

while annual-dominated communities tend to have a greater correspondence between 

aboveground vegetation and the seed pool (Thompson and Grime, 1979; Ungar and 

Woodell, 1993; Milberg, 1995; Bakker et al., 1996; Osem et al., 2006).  Each year in an 

annual-dominated community the seedlings germinate from the available seed pool which 

reflects vegetation of the previous year (Osem et al., 2006).  

When comparing the relationship between the seed pool and aboveground 

vegetation among forest, grassland, and wetland seed pools, grassland standing 

vegetation is most similar to the seed pools in terms of species composition 

(Hopfensperger, 2007).  In grasslands, extreme environmental conditions may select for 

species that rely on persistent seed pools, resulting in similar above and belowground 

communities (Henderson et al., 1988). However, higher similarity between the seed pool 

and aboveground vegetation in desert grasslands is more likely due to limited dispersal 

and aggregated seed patterns surrounding parent plants (Shaukat and Siddiqui, 2004).  In 

contrast, some studies have found a lack of correspondence between the seed pool and 

aboveground vegetation in desert grasslands which has been attributed to different 
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dominant species in the aboveground and seed pool communities (Eriksson and Eriksson, 

1997; Kalamees and Zobel, 1997).  For example, the most dominant species in the seed 

pool may be overrepresented due to high production of small seeds (Eriksson and 

Eriksson, 1997). 

The aboveground vegetation not only influences the community composition of 

the seed pool but also the distribution of the seeds. Although the distribution of seeds 

within desert seed pools is spatially variable, seeds are generally more abundant under 

shrub and tree canopies than in interspaces and exhibit an aggregated seed pattern due to 

seeds settling close to the mother plant (Nelson and Chew, 1977; Guo et al., 1998; 

Marone et al., 2004; Shaukat and Siddiqui, 2004).  A study investigating spatial patterns 

of species richness found higher species richness at 2 m and 6 m from shrubs (the mid-

point and furthest sampling point from shrubs; Feng-Rui, 2008).  In pinyon-juniper 

woodlands, seed densities and species richness were highest in interspaces and the 

interface between interspaces and litter under trees (Koniak and Everett, 1983).  Shrubs 

and trees affect the spatial distribution of seeds as they can act as a barrier which may 

alter wind dynamics and subsequent seed deposition patterns.  (Guo et al., 1998; Feng-

Rui, 2008).  Seeds often accumulate beneath shrubs because they decrease wind velocity 

and physically trap seeds, leading to deposition close to shrubs (Bullock and Moy, 2004).  

Seeds can also be redistributed from interspaces to litter beneath shrubs by wind and 

water (phase II dispersal; Chambers and MacMahon, 1994).     

This study explores the seed pool and the aboveground vegetation within a Great 

Basin plant community and how the aboveground vegetation influences the seed pool 

community composition and seed distributions.  Specific goals were to determine the 
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relationship between the compositions of the seed pool and the aboveground vegetation 

and the effect of shrubs (microhabitat effects) and perennial bunchgrass cover 

(community phase effects) on the seed pool community composition, seed density, and 

seed pool species richness.    

 
2.  Methods  
 
 
2.1.  Study site 

Soil seed pool samples were collected from the Onaqui Sagebrush/Cheatgrass 

SageSTEP research site in Tooele County, Utah, USA, about 40 km south of Tooele, UT 

(40°11'53"N 112°27'51"W).  The Onaqui site is located on the eastern toeslope of the 

Onaqui mountains at an elevation of 1660-1700 meters.  Onaqui has fine-loamy soils 

(SageSTEP, 2009).  Characteristic vegetation of this site includes Wyoming big 

sagebrush (Artemisia tridentata ssp. wyomingensis), shadscale saltbush (Atriplex 

confertifolia), yellow rabbitbrush (Chrysothamnus viscidiflorus), Sandberg bluegrass 

(Poa secunda), squirreltail (Elymus elymoides), Indian ricegrass (Achnatherum 

hymenoides), bluebunch wheatgrass (Pseudoroegneria spicata), basin wildrye (Leymus 

cinereus), and cheatgrass (Bromus tectorum).   

Seed pool germination assays were conducted at the Utah State University 

Research Greenhouse Facility in Logan, UT. 

 
2.2.  Experimental design 

Soil seed pool samples were collected 14-17 and 22-24 August 2006 from three 

plots representing different experimental restoration treatments (control, prescribed burn, 

and tebuthiuron) within the Onaqui site.  An additional Plateau treatment was applied to 
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all plots as a split-plot factor.  Samples were collected before treatments were 

implemented; thus, comparisons of results among treatments reflect spatial variation in 

seed pools in untreated sagebrush stands.  In each plot, subplots with two levels of 

perennial bunchgrass cover were sampled.  Community phases were chosen by dividing 

the cover of perennial bunchgrasses into 3 ranges.  Subplots with greater than 19 percent 

perennial bunchgrass cover were considered phase 1 communities, those with 10-19 

percent bunchgrass cover were considered phase 2, and those with less than 10 percent 

perennial bunchgrass cover were considered phase 3 communities.  Only phase 1 and 3 

communities were sampled in order to examine high and low native bunchgrass covers. 

Four phase 1 subplots and four phase 3 subplots that did not receive Plateau were 

sampled in the control (CO), prescribed burn (FI), and tebuthiuron (TE) plots, and four 

phase 1 subplots and four phase 3 subplots that did receive Plateau were sampled in the 

control plot for a total of 32 subplots.  Although the set of the control subplots that did 

receive Plateau are not from a true plot, I refer to these subplots as the control-Plateau 

plot (CP).    

Within each 0.1-ha (30 x 33 m) subplot, 4, 28-m transects were laid out so as to 

not interfere with vegetation surveys.  Transects ran north-south and were located at 3, 

10, 20, and 27 meters from the northwest corner of the subplot.  A composite sample 

consisting of 5 subsamples from within a 25 x 25-cm frame was collected every 3 meters 

along each of the 4 transects for a total of 10 composite samples per transect and 40 per 

subplot.  Collecting many small samples has been shown to increase the precision of 

estimates of seed numbers in the soil (Bigwood and Inouye, 1988).  If necessary, 

sampling locations were shifted slightly in order to assure that all 5 subsamples were 
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from the same microhabitat (see below). Subsamples measured 6.1 cm in diameter and 

were taken to a depth of 4 cm with PVC couplings.  Litter and soil layers were collected 

together.  Microhabitat (shrub interspace or beneath shrub) was recorded for each 

composite sample collected. 

 
2.3. Vegetation surveys 

Aboveground vegetation surveys were conducted on transects located at 2, 7, 15, 

23, and 28 meters from the northwest corner of each subplot.  The line-point intercept 

method was used to measure the cover of each species present along each transect 

(Herrick et al., 2005).  Species intercepted by the pin were recorded every half meter 

totaling 60 points per transect and 300 points per subplot.  Vegetation surveys were 

conducted in summer 2006.  Nomenclature for all plant species followed the USDA 

NRCS PLANTS Database (2009). 

 
2.4.  Evaluating the seed pool 
 

The germinable seed pool was evaluated by direct germination in a greenhouse 

following cold-moist stratification, which has been shown to be an efficient and reliable 

method for determining species presence in the germinable seed pool (Gross, 1990).    

Each composite sample was moistened to field capacity and kept in an unlighted 

refrigerator at 2°C.  After 60 days of stratification, samples were removed from the 

refrigerator and spread over a 2-cm layer of sand in planting trays with drainage holes.  

Planting trays were divided into 3 25.4 X 16.9-cm compartments, each containing one 

soil sample.  Spread out soil samples had a depth of ≈1.3 cm and a volume of 584.49 cm3.  

Samples were kept moist, and seedlings were identified, counted, and removed as they 
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emerged.  Individuals that were not identified in the seedling stage were transplanted and 

grown until mature.   

Due to the high volume of samples collected, not all seed pool samples were 

evaluated at the same time.  Therefore, depending on the availability of greenhouse 

space, varying numbers of samples were randomly selected from each treatment 

combination for each germination assay.  Eleven of the 40 samples from each treatment 

combination from the 2006 collection were germinated and evaluated for each of the first 

and second germination assay.  Six samples from the 2006 collection from each treatment 

combination were germinated and evaluated for the third germination assay.  Each 

germination assay lasted 150 days.  Emergence was initially censused for 115 days, at 

which point emergence was noticeably reduced.  Samples were then dried out for 14 days 

and mixed, after which watering was resumed and emergence was censused for an 

additional 21 days.    

The first germination assay ran from mid-January to mid-June 2007.  The second 

germination assay ran from mid-June to mid-November 2007, and the third germination 

assay ran from mid-January to mid-June 2008.  It was important that the first and third 

germination assays ran during the same time of year so as to not confound microhabitat 

and community phase effects with potential seasonal germination effects. 

 
2.5.  Statistical Analysis 
 

Sørensen’s similarity index (Cs) and Bray-Curtis distance (BC) were calculated in 

R version 2.6.2 (R Development Core Team, 2008) to compare the seed community to 

the aboveground community.  These two similarity/distance metrics compare two 

communities in different ways.  Sørensen’s similarity is based strictly on 
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presence/absence:  Cs=2w/(2w+A+B) where w is the total number of species found in 

both communities, A is the number of species found aboveground, and B  is the number 

of species found belowground.  A Cs of 0 represents completely dissimilar communities 

and Cs of 1 represents identical communities at the level of presence/absence.  Bray-

Curtis distance incorporates information on relative abundance (or cover).  This metric 

normalizes relative abundance for communities being compared by dividing the absolute 

differences by the summation:  

ik

n

i
ijik

n

i
ij xxxxBC +−= ∑∑ /||  

where xij is the relative abundance of species i at community  j, xik is the relative 

abundance of species i at community k, and n is the total number of species.  A BC of 0 

represents most similar communities, and a BC of 1 represents most different 

communities.  Cs and BC were calculated for the entire site and for each plot using 

relative cover of the aboveground community and relative abundance of the germinable 

seed pool community to avoid differences in sampling scales.   

 To further compare the community composition of the germinable seed pool to 

that of the aboveground vegetation, data were ordinated by non-metric multidimensional 

scaling (NMDS) with a  Bray-Curtis distance measure using the metaMDS function in 

the Vegan package in R version 2.6.2 (Oksanen et al., 2008; R Development Core Team, 

2008).  As with the similarity and distance metrics, relative cover of the aboveground 

community and relative abundance of the germinable seed pool community were used to 

avoid differences in sampling scales.  Aboveground community structure variables based 

on functional groups (relative cover of annual forbs, annual grasses, perennial forbs, 

perennial grasses, Poa secunda, shrubs, and trees) were fitted and plotted onto the 
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ordination solution using the envfit function in R and P < 0.05 to determine significance 

(R Development Core Team, 2008).  NMDS on densities of germinable seed pool species 

was also used to compare beneath shrub (S) and shrub interspace (I) community 

compositions and to compare phase 1 and phase 3 community compositions.   

To determine the number of dimensions for each NMDS, stress values were 

assessed.  Stress is a measure of how much the distances in the reduced ordination space 

depart from the distances in the original p-dimensional space.  High stress values indicate 

a possibility that sites are randomly being placed without any relation to the original 

distances.  Therefore, ordinations with the lowest possible stress are desirable; values up 

to 20 are acceptable and can be interpreted ecologically (Clarke, 1993).  Regardless of the 

number of dimensions chosen, all figures are shown in two dimensions because the third 

dimension did not seem to alter results upon inspection. 

A mixed-model factorial ANOVA (analysis of variance) was performed to detect 

differences in total seed density and species richness (total number of species present) 

between microhabitat and community phase using the MIXED procedure in SAS version 

9.1.3 (SAS Institute, 2003) and P < 0.05 to determine significance.  Plot, microhabitat, 

and community phase were treated as fixed effects, and subplot was a random effect.  

The same model was then used to detect seed density differences within each of six 

functional groups:  annual forb, annual grass, perennial forb, perennial grass, Poa 

secunda, and shrub.  Functional groups were assigned based on different morphologies 

and root systems.  Poa secunda was considered a different functional group than 

perennial grasses because P. secunda has a more shallow root system than other perennial 

grasses.  One tree species (Tamarix ramosissima) was found in the germinable seed pool 
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but were not analyzed as a functional group due to very low seed densities and species 

richness. 

Total seed density and species richness across functional groups were square root 

transformed to meet the assumptions of normality and homogeneity of variance.  Seed 

density within the perennial grass, perennial forb, and annual forb functional groups was 

square root transformed.  Seed density within annual grass, Poa secunda, and shrub was 

log transformed.  For significant main effects, least squared means were compared using 

Tukey’s test.  For significant interactions, least squared means comparisons between 

treatment combinations sharing at least one factor level were made using the False 

Discovery Rate to control for familywise error rate.  Least squared means and standard 

errors were back-transformed for figures.  

   
3.  Results  
 
 
3.1.  Relationship between the germinable  

seed pool and aboveground vegetation 
 

 A total of 46 species germinated from the seed pool, and 22 species were recorded 

aboveground (Table A.1; Table A.2).  The germinable seed pool and aboveground 

vegetation were moderately different in terms of species presence at the site scale 

according to Sørensen’s similarity index (Cs = 0.395). Results were similar for all 

individual plots (CO Cs = 0.375; FI Cs = 0.426; TE Cs = 0.471; CP Cs = 0.326).  When 

incorporating relative abundance, Bray-Curtis distance showed a similar trend where the 

germinable seed pool and aboveground vegetation were moderately dissimilar at the 

overall site level and the individual plot levels (Site BC = 0.640; CO BC=0. 0.622; FI BC 

= 0.596; TE BC = 0.618; CP BC = 0.712).  Both metrics conclude the aboveground-
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germinable seed pool relationship was the most dissimilar in the CP plot.  According to 

Sørensen’s similarity index the aboveground-belowground communities were most 

similar in the TE plot.  However, Bray-Curtis distance identified the FI plot as having the 

most similar aboveground-belowground communities. 

 The NMDS with two dimensions was an acceptable representation of the original 

germinable seed pool data (stress = 9.83).  Four of the seven aboveground structure 

variables (functional groups) were significantly correlated with the germinable seed pool 

community, with correlations being especially strong for annual grasses and forbs, as 

expected (Table 2.1).  All three annual grass species present in the germinable seed pool 

(Bromus tectorum, Setaria verticillata, and Vulpia octoflora) were positively correlated 

with the cover of the aboveground annual grass functional group (Fig. 2.1).   

 
3.2.  Effects of aboveground community  

phase and micohabitat on germinable  
seed pool community, seed densities,  
and species richness 

 
 
3.2.1.  Germinable seed pool community 
 
 The NMDS plot constructed to compare microhabitats with three dimensions was 

an acceptable solution (stress=19.77).  Interspace and beneath shrub communities did not 

display distinct community compositions as indicated by the lack of separation in the 

ordination plot between the two microhabitats (Fig. 2.2). 

 The NMDS comparing aboveground community phase required three dimensions  

to achieve an acceptable stress level of 17.76.  There was no obvious separation in phase  

1 and phase 3 community compositions (Fig. 2.3).  

 



 
 

20 
3.2.2.  Seed density 
 

ANOVA showed that seed density was significantly affected by aboveground 

community phase and the plot x microhabitat interaction (Table 2.2).  Community phase 

1 (higher perennial bunchgrass cover) had significantly higher total seed densities than 

community phase 3 (Fig. 2.4).  The significant plot x microhabitat interaction is 

explained by a trend for interspaces to have greater densities in FI and TE plots but lower 

seed densities in the CO plot relative to shrubs (Fig. 2.5). 

 Perennial grass seed density was significantly affected by aboveground 

community phase (Table 2.3).  Seed density was higher in phase 1 communities (higher 

perennial bunchgrass cover) than in phase 3 communities (Fig. 2.6).  Annual grass seed 

density was significantly affected by plot (Table 2.3).  Seed density in the CP plot was 

significantly higher than in the FI and TE plots, and seed densities in CP, CO, and FI 

were significantly higher than in TE (Fig. 2.7).  Perennial forb seed density was 

significantly affected by the plot x microhabitat interaction (Table 2.3).  Although no 

pairwise mean comparisons were statistically significant at the 0.05 probability level, 

there was a trend for the beneath shrub microhabitat to have greater seed densities in CO 

and CP but lower densities in FI and TE relative to interspaces (Fig. 2.8).  Annual forb 

seed density was significantly affected by plot, phase, and the plot x microhabitat 

interaction (Table 2.3).  Seed density was significantly higher in the TE than in the CO 

plot, while densities in the CP and FI plot were intermediate and did not differ from each 

other or from TE and CO seed densities (Fig. 2.9).  Phase 1 communities (higher 

perennial bunchgrass cover) had significantly more annual forb seeds than phase 3 

communities (Fig. 2.10).  The significant plot x microhabitat interaction is explained by a 
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trend for interspaces to have greater densities in FI and TE plots but lower seed densities 

in the CO plot relative to shrubs (Fig. 2.11).  Poa secunda seed density was significantly 

affected by community phase, with phase 1 communities having significantly more seeds 

than phase 3 communities (Table 2.3; Fig. 2.12).  Shrub seed density was significantly 

affected by microhabitat, with more seeds found beneath shrubs than in interspaces 

(Table 2.3; Fig. 2.13).      

 
3.2.3. Species richness 

ANOVA showed that species richness of the germinable seed pool was 

significantly affected by the plot x microhabitat interaction and the plot x microhabitat x 

phase interaction (Table 2.2).  There seems to be faintly variable patterns among plot and 

microhabitat, but most of the observed differences were insignificant and not interpreted 

readily (Fig. 2.14).  Although no pairwise mean comparisons were statistically significant 

at the 0.05 probability level for the plot x microhabitat x phase interaction, this 3-way 

interaction is explained by a trend for the beneath shrub microhabitat to have higher 

species richness in CO, CP and FI plots of phase 3 communities and the CO plot of phase 

1 communities and lower species richness in the CP plot of phase 1 communities and the 

TE plot of phase 3 communities relative to interspaces (Fig. 2.15). 

 
4.  Discussion 
 
 
4.1.  Relationship between the germinable seed pool 

and aboveground vegetation 
 
Desert grassland germinable seed pool communities may correspond to the 

aboveground vegetation as a result of limited seed dispersal and clustered seeds 
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surrounding parent plants (Shaukat and Siddiqui, 2004).  Results from the similarity and 

distance metrics did not strongly support these findings.  Sørensen’s similarity index and 

Bray-Curtis distance indicate that the germinable seed pool and aboveground community 

compositions were moderately different at the overall site and individual plot levels.  The 

germinable seed pool and aboveground vegetation only shared 12 of 56 species found.  

However, for species present in both the germinable seed pool and aboveground 

vegetation, relative abundances were similar except that Alyssum desertorum and 

Ceratocephala testiculata were vastly over-represented in the germinable seed pool and 

Artemisia tridentata aboveground (Table A.1; Table A.2).   

Eriksson and Eriksson (1997) have attributed the lack of correspondence between 

the germinable seed pool and aboveground vegetation to the fact that the dominant 

species often differ between the two communities.  A. tridentata was the most dominant 

species aboveground.  Young and Evans (1989) found that no A. tridentata seeds 

germinated from the germinable seed pool when collected before fall when A. tridentata 

seeds mature.  In contrast, in the present study A. tridentata seeds were found in 

germinable seed pool samples collected in August, before seed dispersal, but at very low 

densities.  Therefore, A. tridentata was overrepresented aboveground, which decreased 

the similarity between the germinable seed pool and aboveground vegetation.  

Conversely, A. desertorum and C. testiculata were abundant in the germinable seed pool 

but had very low cover aboveground.  Species such as A. desertorum and C. testiculata 

that produce small abundant seeds generally may be overrepresented in the germinable 

seed pool (Eriksson and Eriksson, 1997).  Also, A. desertorum and C. testiculata are 

small annual species which can produce large germinable seed pools and use seed 
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banking as a bet hedging germination strategy (Philippi and Seger, 1989; Gutterman, 

2002; Mistro et al., 2005).  A. desertorum and C. testiculata may be maintaining dormant 

seeds to spread the risk of germination over time allowing seeds to wait for more 

favorable germination conditions which may increase the chance of establishment and 

survival. Another possibility for the overrepresentation of A. desertorum and C. 

testiculata belowground is the simple fact that these plants were not frequently 

encountered aboveground during data collection using the line-point intercept method 

due to their relatively small size (the probability of a pin hitting a smaller plant is lower 

than the probability of hitting a larger plant) and due to primarily actively growing much 

earlier in the season than when the aboveground sampling occurred. 

In contrast to the similarity and distance metrics, the NMDS suggested that the 

germinable seed pool and aboveground vegetation were in fact moderately similar.  One 

reason for this disagreement is the organizational level of the aboveground vegetation 

used in comparisons.  For the similarity and distance metrics, relative abundances were 

compared at the species-level.  However, the NMDS compared the relative abundance of 

each species in the germinable seed pool to the relative abundance of aboveground 

vegetation functional groups, i.e. aboveground vegetation structure.  Therefore, at the 

species-level the germinable seed pool and aboveground vegetation communities were 

not very similar, but similarities were considerably greater when comparing germinable 

seed pool species abundances to the aboveground functional groups.  There were a 

number of species that were only present above or belowground which decreased 

similarity between the germinable seed pool and aboveground vegetation.  However, the 

differences between each species present in either community were no longer detected 
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when using functional group as the aboveground organizational level of comparison.   

The germinable seed pool and aboveground vegetation tend to be more similar in 

annual communities than in perennial communities (Thompson and Grime, 1979; Ungar 

and Woodell, 1993; Milberg, 1995; Bakker et al., 1996; Osem et al., 2006).  NMDS 

results from the present study did show a significant correlation between the annual 

germinable seed pool and aboveground structure, but also a significant correlation 

between the perennial germinable seed pool and aboveground structure.  The unexpected 

correspondence between the perennial germinable seed pool species and aboveground 

vegetation structure could simply be a function of the comparison between species and 

functional groups.  As displayed by the similarity and distance metrics, the similarity 

between germinable seed pool and aboveground species compositions was low.  

However, comparing germinable seed pool species composition to aboveground structure 

yielded the opposite result.  Although the germinable seed pool and aboveground 

vegetation were not similar at the species level, the germinable seed pool species 

composition was similar to the aboveground vegetation functional group categories.  For 

example, Cirsium spp. is present in the germinable seed pool but not aboveground yet 

Cirsium spp. is positively correlated with the aboveground perennial forb functional 

group.   

  
4.2.  Aboveground community phase 

and microhabitat effects 

Phase 1 communities (higher perennial bunchgrass cover) had higher total seed 

density and annual forb seed density than did phase 3 communities (lower perennial 

bunchgrass cover).  Subplots with higher perennial bunchgrass cover may have simply 
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had more plants producing seed, especially annual forbs, which were incorporated into 

the germinable seed pool.  Perennial grass and P. secunda seed densities were also higher 

in phase 1 communities, which was not u considering that phase 1 communities were 

defined by higher perennial bunchgrass cover.   

Shrub was the only functional group significantly affected by microhabitat alone.  

The beneath shrub microhabitat contained more seeds than interspaces, which is not 

unusual.  Seed densities, especially seeds of shrubs, tend to be higher under shrub 

canopies due to seeds falling beneath and adjacent to the parent plant (phase I dispersal; 

Shaukat and Siddiqui, 2004).  The patterns between microhabitats for total seed density, 

perennial forb, and annual forb seed densities varied by plot.  Beneath shrub 

microhabitats in the CO plot (and CP plot for perennial forb seed density) had greater 

seed densities relative to interspaces, which was the same trend found with shrub seeds.  

Shrubs might have decreased wind velocity, physically trapping seeds beneath shrubs 

(Bullock and Moy, 2004).  Another explanation for higher beneath shrub densities is 

seeds could have been transported from interspaces and trapped in the litter beneath 

shrubs (phase II dispersal; Chambers and MacMahon, 1994).  However, the TE and FI 

plots had greater seed densities in interspaces than beneath shrubs.  In TE and FI plots, 

germination conditions may be more favorable beneath shrubs thereby depleting the soil 

germinable seed pool.  Studies have shown that shrubs may ameliorate the microclimatic 

conditions by providing shade thereby decreasing soil temperatures and increasing soil 

moisture by drawing up water from the deep soil profile (Moro et al., 1997; Caldwell et 

al., 1998).  Both of these factors may increase germination and depletion of the 

germinable seed pool. The fact that plot strongly affected which microhabitat had higher 
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densities suggests that at best there is only a weak microhabitat effect, contrary to what 

has been found in a number of other studies (Nelson and Chew, 1977; Guo et al., 1998; 

Marone et al., 2004; Shaukat and Siddiqui, 2004).  In fact, the evidence from 

microhabitats as well as from the overall plot differences suggests strong spatial 

variability in seed density.  

There are few if any studies investigating the spatial pattern of species richness of 

seeds in desert shrub communities, but Feng-Rui (2008) reported species richness was 

highest 2 m and 6 m from shrubs.  Results from the present research can neither 

corroborate nor contradict this finding.  The significance of the plot x microhabitat x 

phase interaction without any significant main effects suggests that species richness is 

spatially variable; while the causes of this variability cannot be determined in this study 

they do not appear to include microhabitat or phase.  In an attempt to explain species 

richness patterns, I performed a regression analysis in R version 2.6.2 (R Development 

Core Team, 2008) to determine if species richness varies as a function of seed density; 

that is, a simple sampling effect.  Species richness and seed density were square root 

transformed.  With richness as the response and density as the predictor variable, a linear 

relationship with density only explains about 0.97 percent (R2 = 0.009707) of the 

variation in species richness.  In addition, the predictor variable (seed density) was not 

significant (P = 0.439), and the regression coefficient for density was extremely low 

(0.008662). Therefore, richness does not necessarily accumulate with increasing seed 

density, and species richness was not an artifact of varying seed densities.   

The invasive grass Bromus tectorum was the most dominant annual grass on site.  

However, in contrast to expectations, annual grass seed density was not affected by 
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aboveground community phase or microhabitat, but was affected by plot, which 

demonstrates spatial variability in annual grass and B. tectorum seed density at the plot 

scale.  Questions about the effect of restoration treatments on B. tectorum are addressed 

in Chapter 3. 

While aboveground community phase and microhabitat did affect seed density, 

germinable seed pool species composition was not strongly affected by these two factors, 

or at least NMDS did not detect such effects.  Due to variability in seed dispersal patterns 

among species, distinct germinable seed pool communities as a function of microhabitat 

and aboveground community phase may not exist.   

In conclusion, seed densities were affected by aboveground community phase and 

microhabitat while species richness and germinable seed pool community composition 

were not.  Both seed density and species richness varied spatially.  Species compositions 

were dissimilar when the germinable seed pool and aboveground vegetation were 

compared at the species level but were similar when the germinable seed pool was 

compared to the aboveground vegetation functional groups. 

 
References 
 
Bakker, J.P., Bakker, E.S., Rosen, E., Verweij, G.L., Bekker, R.M., 1996. Soil seed bank 

composition along a gradient from dry alvar grassland to Juniperus shrubland. 

Journal of Vegetation Science 7, 165-176. 

Bigwood, D.W., Inouye, D.W., 1988. Spatial pattern analysis of seed banks: an improved 

method and optimized sampling. Ecology 69, 497-507. 

Bullock, J. M., Moy, I.L., 2004. Plants as seed traps: inter-specific interference with 

dispersal. Acta Oecologica 25, 35-41. 



 
 

28 
Caldwell, M.M., Dawson, T.E., Richards, J.H., 1998. Hydraulic lift: consequences of 

water effluxed from the roots of plants. Oecologia 113, 151-161. 

Chambers, J.C., MacMahon, J.A., 1994. A day in the life of a seed: movements and fates 

of seeds and their implications for natural and managed systems. Annual Review 

of Ecology and Systematics 25, 263-292. 

Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community 

structure. Austral Ecology 18, 117-143. 

Eriksson, Å., Eriksson, O., 1997. Seedling recruitment in semi-natural pastures: the 

effects of disturbance, seed size, phenology and seed bank. Nordic Journal of 

Botany 17, 469-482.  

Feng-Rui, L., 2008. Presence of shrubs influences the spatial pattern of soil seed banks in 

desert herbaceous vegetation. Journal of Vegetation Science 19, 537-548. 

Gross, K.L., 1990. A comparison of methods for estimating seed numbers in the soil. The 

Journal of Ecology 78, 1079-1093. 

Guo, Q., Rundel, P.W., Goodall, D.W., 1998. Horizontal and vertical distribution of 

desert seed banks: patterns, causes, and implications. Journal of Arid 

Environments 38, 465-478. 

Guo, Q., Rundel, P.W., Goodall, D.W., 1999. Structure of desert seed banks: 

comparisons across four North American desert sites. Journal of Arid 

Environments 42, 1-14. 

Gutterman, Y. 2002. Survival Strategies of Annual Desert Plants. Adaptations of Desert 

Organisms. Springer-Verlag, Berlin, Heidelberg, Germany. 

Hassan, M.A., West, N.E., 1986. Dynamics of soil seeds pools in burned and unburned 



 
 

29 
sagebrush semi-deserts. Ecology 67, 269-272. 

Henderson, C.B., Petersen, K.E., Redak, R.A., 1988. Spatial and temporal patterns in the 

seed bank and vegetation of a desert grassland community. The Journal of 

Ecology 76, 717-728. 

Herrick, J.E., Van Zee, J.W., Havstad, K.M., Burkett, L.M., Whitford, W.G., 2005. 

Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems. USDA-

ARS Jornada Experimental Range. The University of Arizona Press, Tucson, 

Arizona, USA. 

Hopfensperger, K.N., 2007. A review of similarity between seed bank and standing 

vegetation across ecosystems. Oikos 116, 1438-1448. 

Humphrey, D.L., Schupp, E.W., 2001. Seed banks of Bromus tectorum-dominated 

communities in the Great Basin. Western North American Naturalist 61, 85-92. 

Jurado, E., and Flores, J., 2005. Is seed dormancy under environmental control or bound 

to plant traits? Journal of Vegetation Science 16, 559-564. 

Kalamees, R., Zobel, M., 1997. The seed bank in an estonian calcareous grassland: 

comparison of different successional stages. Folia Geobotanica 32, 1-14.  

Kemp, P.R., 1989. Seed banks and vegetation processes in deserts. In: Leck, M.A., 

Parker V.T., Simpson, R.L. (Eds.), Ecology of Soil Seed Pools. Academic Press, 

New York, pp. 257-282. 

Kigel, J., 1995. Seed germination in arid and semiarid regions. In: Kigel, J., Galili, G. 

(Eds.), Seed Development and Germination. Marcel Dekker, New York, pp. 645-

699. 

Koniak, S., and Everett, R.L., 1982. Seed reserves in soils of successional stages of 



 
 

30 
pinyon woodlands. American Midland Naturalist 108, 295-303. 

Marone, L., Cueto, V.R., Milesi, F.A., Lopez de Casenave, J., 2004. Soil seed bank 

composition over desert microhabitats: patterns and plausible mechanisms. 

Canadian Journal of Botany 82, 1809-1816. 

Milberg, P., 1995. Soil seed bank after eighteen years of succession from grassland to 

forest. Oikos 72, 3-13. 

Mistro, D.C., Rodrigues, L.A.D., Schmid, A.B., 2005. A mathematical model for 

dispersal of an annual plant population with a seed bank. Ecological Modelling 

188, 52-61. 

Moro, M.J., Pugnaire, F.I., Haase, P., Puigdefabregas, J., 1997. Effect of the canopy of 

Retama sphaerocarpa on its understorey in a semiarid environment. Functional 

Ecology 11, 425-431. 

Nelson, J.F., Chew, R.M., 1977. Factors affecting seed reserves in the soil of a Mojave 

desert ecosystem, Rock Valley, Nye County, Nevada. American Midland 

Naturalist 97, 300-320. 

O'Connor, T.G., 1991. Local extinction in perennial grasslands: a life-history approach. 

The American Naturalist 137, 753-773. 

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G.L., Stevens, M.H.H. 2008. 

Vegan: Community Ecology Package. R package version 1.13-1. Available from:  

http://vegan.r-forge.r-project.org/. 

Osem, Y., Perevolotsky, A., Kigel, J., 2006. Similarity between seed bank and vegetation 

in a semi-arid annual plant community: the role of productivity and grazing. 

Journal of Vegetation Science 17, 29-36. 



 
 

31 
Philippi, T., Seger, J., 1989. Hedging one's evolutionary bets, revisited. Trends in 

Ecology & Evolution 4, 41-44. 

R Development Core Team, 2008. R: A language and environment for 

  statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

Available from:  http://www.R-project.org. 

SageSTEP [Sagebrush Treatment Evaluation Project], 2009.  Study site locations:  

Onaqui sites.  Available from:  http://www.sagestep.org/locations/onaqui.html.  

SAS Institute. 2003. SAS System for Microsoft Windows. SAS Institute, Inc., Cary, 

North Carolina, USA. 

Shaukat, S.S., Siddiqui, I.A., 2004. Spatial pattern analysis of seeds of an arable soil seed 

bank and its relationship with above-ground vegetation in an arid region. Journal 

of Arid Environments 57, 311-327. 

Thompson, K., Grime, J.P., 1979. Seasonal variation in the seed banks of herbaceous 

species in ten contrasting habitats. The Journal of Ecology 67, 893-921. 

Ungar, I.A., Woodell, S.R.J., 1993. The relationship between the seed bank and species 

composition of plant communities in two British salt marshes. Journal of 

Vegetation Science 4, 531-536. 

USDA, NRCS, 2009. The PLANTS Database. National Plant Data Center, Baton Rouge, 

Louisiana, USA. Available from:  http://plants.usda.gov. 

Vilà, M., Gimeno, I., 2007. Does invasion by an alien plant species affect the soil seed 

bank? Journal of Vegetation Science 18, 423-430. 

Young, J.A., Evans, R.A., 1975. Germinability of seed reserves in a big sagebrush 

community. Weed Science 23, 358-364. 

http://www.r-project.org./
http://plants.usda.gov/


 
 

32 
 

Young, J.A., Evans, R.A., 1989. Dispersal and germination of big sagebrush (Artemisia 

tridentata) seeds. Weed Science 37, 201-206. 



 
 

33 
Table 2.1  Squared correlation coefficients (R2) and P-values of aboveground vegetation 
structure variables with the seed pool community as determined by non-metric 
multidimensional scaling (NMDS).  Significant P-values at the 0.05 level are indicated in 
bold.  
 

Aboveground vegetation variable R2 P 
Perennial grass 0.2777  0.007 
Perennial forb 0.2779  0.012 
Annual grass  0.5559  <0.001 
Annual forb 0.6844 <0.001 
Poa secunda 0.0336  0.615 
Shrub 0.1257  0.130 
Tree 0.1840  0.056 
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Table 2.2  P-values for fixed effects of total seed density and species richness.  
Significant P-values at the 0.05 level are indicated in bold. 
 

Fixed effect 
Total seed 

density 
Total species 

richness 
plot 0.1222 0.0960 
phase 0.0052 0.7316 
plot*phase 0.4492 0.9826 
microhabitat 0.1161 0.6389 
plot*microhabitat 0.0411 0.0506 
phase*microhabitat 0.2886 0.0718 
treatment*phase*microhabitat 0.1936 0.0225 
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Table 2.3  P-values for fixed effects of seed density and species richness within each 
functional group (AF = annual forb, AG = annual grass, PF = perennial forb, PG = 
perennial grass, POA = Poa secunda, SH = shrub, T = tree).  Significant P-values at the 
0.05 level are indicated in bold. 
 
 
Fixed effect PG AG PF AF POSE SH 
plot  0.1797 <0.0001  0.2042  0.0233  0.1397  0.6478 
phase  0.0125  0.1956  0.2085  0.0039  0.0317  0.1240 
plot*phase  0.0963  0.2997  0.8293  0.4323  0.6312  0.9297 
microhabitat  0.9656  0.2399  0.9700  0.0731  0.0774  0.0053 
plot*microhabitat  0.8793  0.5973  0.0220  0.0221  0.5659  0.1063 
phase*microhabitat  0.1987  0.7189  0.1471  0.3443  0.9007  0.8270 
plot*phase*microhabitat  0.6178  0.5361  0.2123  0.4197  0.2637  0.4709 
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Figure 2.1  Non-metric multidimensional scaling (NMDS) ordination plot of the 
germinable seed pool community.  Points represent the subplot scores.  Species scores are 
represented by species symbols (USDA, NRCS, 2009).  Sold lines represent the fitted 
aboveground vegetation structure variables (AF = annual forb, AG = annual grass, PF = 
perennial forb, PG = perennial grass, POA = Poa secunda, SH = shrub, TR = tree).   
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Figure 2.2  Non-metric multidimensional scaling (NMDS) ordination plot comparing 
microhabitat.  Diamonds represent the subplot scores which are categorized as either 
shrub interspace or beneath shrub communities.  Species scores are represented by 
species symbols (USDA, NRCS, 2009).   



 
 

38 

 

 
Figure 2.3  Non-metric multidimensional scaling (NMDS) ordination plot comparing 
community phase.  Diamonds represent the subplot scores which are categorized as either 
phase 1 or phase 3 communities.  Species scores are represented by species symbols 
(USDA, NRCS, 2009).  
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Figure 2.4  Mean seed density across all plots (+ 1 SE) as affected by community phase.  
Different letters indicate significant differences (P < 0.05).   
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Figure 2.5  Mean seed density across all plots (+ 1 SE) as affected by microhabitat and 
plot (CO = Control, CP = Control-Plateau, FI = Prescribed Burn, TE = Tebuthiuron).  
Different letters indicate significant differences for comparisons between treatment 
combinations sharing at least one factor level (P < 0.05).      
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Figure 2.6  Mean perennial grass seed density (+ 1 SE) as affected by community phase.  
Different letters indicate significant differences (P < 0.05).    
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Figure 2.7  Mean annual grass seed density (+ 1 SE) as affected by plot (CO = Control, 
CP = Control-Plateau, FI = Prescribed Burn, TE = Tebuthiuron).  Different letters 
indicate significant differences (P < 0.05).      
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Figure 2.8  Mean perennial forb seed density (+ 1 SE) as affected by microhabitat and 
plot (CO = Control, CP = Control-Plateau, FI = Prescribed Burn, TE = Tebuthiuron).  
Different letters indicate significant differences for comparisons between treatment 
combinations sharing at least one factor level (P < 0.05).    



 
 

44 

Plot

CO CP FI TE

Se
ed

 d
en

si
ty

0

50

100

150

200

250

a

ab ab

b

 
 
Figure 2.9  Mean annual forb seed density (+ 1 SE) as affected by plot (CO = Control, 
CP = Control-Plateau, FI = Prescribed Burn, TE = Tebuthiuron).  Different letters 
indicate significant differences (P < 0.05).    
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Figure 2.10  Mean annual forb seed density (+ 1 SE) as affected by community phase.  
Different letters indicate significant differences (P < 0.05).   
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Figure 2.11  Mean annual forb seed density (+ 1 SE) as affected by microhabitat and plot 
(CO = Control, CP = Control-Plateau, FI = Prescribed Burn, TE = Tebuthiuron).  
Different letters indicate significant differences for comparisons between treatment 
combinations sharing at least one factor level (P < 0.05).      
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Figure 2.12  Mean Poa secunda seed density (+ 1 SE) as affected by community phase.  
Different letters indicate significant differences (P < 0.05).   
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Figure 2.13  Mean shrub seed density (+ 1 SE) as affected by microhabitat.  Different 
letters indicate significant differences (P < 0.05).   
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Figure 2.14  Mean species richness (+ 1 SE) as affected by microhabitat and plot (CO = 
Control, CP = Control-Plateau, FI = Prescribed Burn, TE = Tebuthiuron).  Different 
letters indicate significant differences for comparisons between treatment combinations 
sharing at least one factor level (P < 0.05).      
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Figure 2.15  Mean species richness (+ 1 SE) as affected by microhabitat, phase, and plot 
(CO = Control, CP = Control-Plateau, FI = Prescribed Burn, TE = Tebuthiuron).  
Different letters indicate significant differences for comparisons between treatment 
combinations sharing at least one factor level (P < 0.05).      
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CHAPTER 3 

EFFECTS OF SAGEBRUSH RESTORATION TREATMENTS ON A GREAT BASIN 

SEED POOL COMMUNITY 

 
Abstract 
 

The influence of sagebrush restoration on Great Basin vegetation dynamics has 

been well documented but the impacts of treatments on the seed pool community has not 

received as much attention.  The effects of restoration treatments (prescribed burn, 

tebuthiuron herbicide, and Plateau® herbicide) on seed pool community composition and 

dominant seed pool species densities were evaluated.  In addition I determined whether 

the pre-treatment seed pool or the aboveground vegetation was more similar to the 

vegetation following the restoration treatment.  Alyssum desertorum, Bromus tectorum, 

Ceratocephala testiculata, and Poa secunda dominated the seed pool community.  The 

seed pool community shifted after restoration treatments, especially in the tebuthiuron 

and Plateau treatments.  Prescribed burn was the only treatment that affected seed 

density.  The post-treatment vegetation community was more similar to the pre-treatment 

vegetation than to the pre-treatment seed pool community, and perennial comparisons 

were as similar as the annual comparisons.  Results suggest seed pool community 

composition and seed density were temporally and spatially variable.  Furthermore, 

tebuthiuron and Plateau may have altered community composition whereas prescribed 

burn affected seed density.  This research also implies that the pre-existing vegetation 

may be a better indicator of the vegetation community following restoration than is the 

seed pool community. 
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1. Introduction 

 
The Great Basin, a cold desert, is the largest North American desert, covering an 

area of approximately 409,000 km2 (Graham, 1999).  This desert provides habitat for 

many endemic plants and animals (Scott et al., 1998).  During the past century, the health 

of this ecosystem has dramatically declined as a result of exotic grass invasion, altered 

fire regime, conversion to agriculture, livestock grazing, and climate change (D’Antonio 

and Vitousek, 1992; Hemstrom et al., 2002).  Some consider certain ecosystems of the 

Great Basin to be critically endangered (Noss et al., 1995).   

The invasive cheatgrass (Bromus tectorum) has contributed to changes in 

community structure and dynamics.  Cheatgrass is a winter annual introduced to the U.S. 

from Eurasia by the late 1800s, probably as a contaminant in grain seed (Mack and Pyke, 

1983; Young and Allen, 1997).  Excessive and improper grazing enhanced the dispersal 

and eventual dominance of cheatgrass (Young and Clements, 2007). Grazing was 

common after fire which reduces the vigor of perennial grasses, and with sagebrush 

removed this created an opportunity for cheatgrass to successfully invade (Stewart and 

Hull, 1949).  Cheatgrass is a prolific seed producer and can easily form persistent seed 

pools.  Once established, densities can reach high levels that increase the chance of 

igniting fires (Young and Clements, 2007).  Cheatgrass is highly flammable, more so 

than the native species, and provides fine fuels which contribute to the spread of fires 

(Stewart and Hull, 1949; D’Antonio and Vitousek, 1992).  These fires often spread to and 

burn healthy sagebrush communities that have not been heavily invaded (Stewart and 

Hull, 1949).  B. tectorum recovers quickly following fires by producing high seed 

densities and outcompeting native species for resources (D’Antonio and Vitousek, 1992).  
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This grass-fire cycle continues, and as a result, cheatgrass dominance has spread, and 

fires have become more frequent.   

Management decisions of the past have created challenges for current and future 

land managers.  For example, overgrazing has led to decreased competitive ability of 

many native grasses which has contributed to both the increase in shrub abundance and 

cheatgrass colonization (Olson and Whitson, 2002; Chambers et al., 2007).  Some 

common land management options used to help restore degraded systems include 

herbicide and prescribed burning which can achieve a variety of goals depending on the 

type and dose of herbicide and the timing of the fire.  The herbicide tebuthiuron can 

selectively thin shrubs at low doses (Whitson and Alley, 1984).  Studies using 

tebuthiuron as a shrub control agent have shown that the number of species does not 

change as a result of tebuthiuron application, although as shrub abundance decreases 

grass abundance increases (Whitson and Alley, 1984; Olson and Whitson, 2002).  This 

shift in abundances can be problematic if cheatgrass is present.  A study that measured 

the cover of cheatgrass and perennial grasses 11 years after herbicide application showed 

that the proportional increase of cheatgrass cover was much greater than that of perennial 

grasses (Blumenthal et al., 2006).  This result indicates that cheatgrass has the ability to 

exploit resources made available by shrub thinning which may increase the cover of 

cheatgrass relative to perennial grasses.  To our knowledge, no studies have investigated 

the effects of tebuithiuron on the seed pool community within the Great Basin.  However, 

researchers investigating the effects of tebuthiuron on seed pools of northern Australia 

floodplains have found that tebuthiuron reduced forb and Mimosa pigra emergence (Lane 

et al., 1997). 
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Plateau® (imazapic) is another herbicide used in restoration, which can suppress 

cheatgrass growth and control cheatgrass populations (Shinn and Thill, 2002; Morris et 

al., 2009).  In addition, Plateau has been shown to be instrumental in establishing 

perennial species, but if cheatgrass is not reduced below a critical threshold, an increase 

in precipitation can augment the recovery of cheatrass to pre-treatment levels (Morris et 

al., 2009).  Plateau tends to affect annuals more than perennials, and there is extensive 

variation among perennial species in sensitivity to Plateau (Shinn and Thill, 2002; Sheley 

et al., 2007).  No studies have determined the effects of Plateau on Great Basin seed 

pools, to our knowledge. 

Prescribed fire also has been used by land managers to reduce shrub abundance 

(Keeley, 2006).  Even low intensity fires can result in high shrub mortality (Baker, 2006).  

Fire creates a pattern of burned and unburned patches (Baker, 2006).  There are a number 

of factors that can contribute to the likelihood of an area burning, including the amount of 

fine fuels, fuel moisture, and wind.  The timing or season in which the fire occurs can 

also influence fire patterns and produce very different results.  Fall burns have been 

shown to produce greater flame length, rate of spread, and fire intensity than spring burns 

(Sapsis and Kauffman, 1991).  However, these differences may not lead to differences in 

percent consumption (Sapsis and Kauffman, 1991). 

Prescribed burning can result in the replacement of shrubs by grasses, which is a 

favorable outcome if the emerging grasses are native species.  However, if cheatgrass is 

present, fire can assist in its spread (Keeley, 2006; Davies et al., 2008).  Prescribed 

burning can increase the availability of safe sites which can be readily colonized by 

invaders (Davies et al., 2008).  Cheatgrass can successfully compete with native grasses 
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for water and nutrients following fire (Melgoza and Nowak, 1991).  Studies looking at 

the effects of wildfire on sagebrush communities have shown that the pulse in nutrients, 

light, and water gives understory herbaceous species the chance to germinate and 

establish.  West and Hassan (1985) found that herbaceous growth doubled one year after 

fire, mainly due to increased cheatgrass cover.  However, perennial grass levels returned 

to those recorded prior to burning.  A similar result was found in a longer term study;  

cheatgrass cover increased within the first few years after fire, but perennial grass cover 

subsequently increased to dominate the landscape (West and Yorks, 2002).   

Not only can cheatgrass take advantage of post-fire conditions by outcompeting 

native species for newly available resources, but the increase in abundance helps 

populations persist by providing the fine fuels that ignite and spread fires (Young and 

Evans, 1978).  However, fire can be an effective management tool for controlling 

invasive species populations, such as cheatgrass, if the fire kills all adult plants and 

eliminates the seed pool (Brooks and Pyke, 2001).  Cheatgrass seeds are relatively short-

lived and do not develop long-lived seed pools, so local extinction of cheatgrass 

populations could be possible if there is 100 percent mortality caused by fire (Mack and 

Pyke, 1983; Brooks and Pyke, 2001).  However, fires tend to create burned and unburned 

patches, which suggests that cheatgrass will survive in unburned patches and produce 

seeds that can be dispersed to burned areas (Baker, 2006).  In addition, cheatgrass seeds 

can survive in burned patches, especially when burns occur after seed has matured and 

fallen to the ground (Klemmedson and Smith, 1964; Young et al., 1972).  Even when fire 

kills cheatgrass seeds and greatly reduces the seed pool, seed densities can quickly return 

to pre-fire levels (Hassan and West, 1986; Humphrey and Schupp, 2001).   
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Restoration strategies often involve disturbances that create opportunities for 

regeneration and germination of seeds from the seed pool (Kotanen, 1996).  Seed pools 

may be used to manage the existing vegetation and to predict the aboveground vegetation 

response to restoration (van der Valk and Pederson, 1989; Olano et al., 2005).  The seed 

pool can be an indicator of community composition and the relative abundance and 

distribution of species (Welling et al., 1988; van der Valk and Pederson, 1989).  Using 

the seed pool as a means of vegetation management is only possible if seeds of desirable 

species are present, seeds of unwanted species are absent or uncommon, and conditions 

are suitable for germination and establishment of desirable species (van der Valk and 

Pederson, 1989).  Even though restoration may provide more suitable conditions for 

colonization, restoration treatments may potentially alter the seed pool community.  

Studies investigating the effects of restoration treatments on the seed pool community 

within the Great Basin are limited.     

This study was designed to evaluate the effects of sagebrush restoration on a 

Great Basin seed pool community.  Specifically, the following research questions were 

addressed:  (1) What is the effect of restoration treatments on seed pool community 

composition and dominant seed pool species densities?  (2) Is the post-treatment 

vegetation community following restoration more similar to the pre-treatment seed pool 

or pre-treatment aboveground vegetation? 

 
2.  Methods 

 
2.1. Study site 
 

Soil seed pool samples were collected from the Onaqui site (40°11'53"N 
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112°27'51"W) which is one of several Sagebrush/Cheatgrass sites being used in the large-

scale fuels reduction and restoration experiment, SageSTEP.  The Onaqui site is located 

on the eastern toeslope of the Onaqui mountains, Tooele County, Utah, USA, at an 

elevation of 1660-1700 meters.  Onaqui has fine-loamy soils (SageSTEP, 2009), and 

Wyoming big sagebrush (Artemisia tridentata ssp. Wyomingensis), shadscale saltbush 

(Atriplex confertifolia), yellow rabbitbrush (Chrysothamnus viscidiflorus), Sandberg 

bluegrass (Poa secunda), squirreltail (Elymus elymoides), Indian ricegrass (Achnatherum 

hymenoides), bluebunch wheatgrass (Pseudoroegneria spicata), basin wildrye (Leymus 

cinereus), and cheatgrass (Bromus tectorum) were common on the site.   

Seed pool germination assays were conducted in a greenhouse at the Utah State 

University Research Greenhouse Facility in Logan, UT. 

 
2.2. Experimental design 
 

Soil seed pool samples were collected from 30 X 33 m subplots within 3, 75-acre 

treatment plots (control, prescribed burn, and tebuthiuron).  In addition, a pre-emergent 

herbicide, Plateau® (imazapic), was applied as a split-plot treatment with half of the 

subplots within a treatment plot being treated with Plateau.  Community phase was 

determined by the native bunchgrass cover where subplots with higher relative native 

bunchgrass cover (> 19 percent) were considered phase 1 communities, and subplots with 

lower (< 10 percent) were considered phase 3 communities.  Four subplots for each 

community phase were sampled totaling eight subplots per treatment plot and 32 subplots 

overall.  Treatments will be referred to as control (CO), tebuthiuron (TE), prescribed burn 

(FI), and control-Plateau (CP; the control subplots that received a Plateau treatment).  

The Tebuthiuron treatment, designed to reduce the shrub canopy by approximately 50 
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percent, was applied late November 2006 at a rate of 1.5 lbs/acre (1681.28 g/ha).  The 

Plateau treatment, designed to severely reduce cheatgrass establishment, was applied 

early November 2006 at a rate of 6 oz/acre (420.32 g/ha).  The prescribed burn, which 

occurred the week of 24 September 2006, blackened about 65 percent of the entire plot 

and 75-80 percent of each subplot. 

Within each subplot, 4, 28-m transects that ran north-south were laid out so as to 

not interfere with annual vegetation surveys.  Transects were located at 3, 10, 20, and 27 

m from the northwest corner of the subplot.  A composite sample consisting of 5 

subsamples within a quarter-meter square frame was collected every 3 m along the 4 

transects for a total of 40 composite samples per subplot.  Microhabitat (beneath shrub or 

interspace) was recorded for each sample.  Sampling locations were occasionally shifted 

slightly to ensure that all 5 subsamples were from the same microhabitat.  Subsamples 

measured 6.1 cm in diameter and were taken to a depth of 4 cm with PVC couplings.  

Litter and soil layers were collected together.   

Pre-treatment seed pool samples were collected from all subplots on 14-17 and 

22-24 August 2006.  On 3-5 November 2006, shortly after the fire but before application 

of herbicides, soil cores were collected 0.5 meters from the original sampling locations 

from only the control and prescribed burn subplots to detect immediate effects of the fire.  

All subplots were resampled 1 meter from original sampling locations one growing 

season after treatment implementation on 1-2 and 7-8 August 2007. 

 
2.3. Vegetation surveys 
 

The line-point intercept method was used to measure the aboveground vegetation 

cover of each species present along transects located at 2, 7, 15, 23, and 28 meters from 
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the northwest corner of each subplot (Herrick et al., 2005).  Vegetation surveys 

conducted in summer 2006 were used to represent the pre-treatment vegetation 

community, and surveys conducted in summer 2007 were used to represent the post-

treatment vegetation community.  Nomenclature for all plant species followed USDA, 

NRCS (2009). 

 
2.4.  Evaluating the seed pool 
 

The germinable seed pool was evaluated by direct germination in a greenhouse 

following cold-moist stratification.  Samples were moistened to field capacity and kept in 

an unlighted refrigerator at 2°C.  After 60 days of cold-moist stratification, samples were 

removed from the refrigerator.  Soil samples were then spread over a 2-cm layer of sand 

in planting trays with drainage holes.  Planting trays were divided into 3 equal 

compartments.  Each compartment contained one composite soil sample.  Therefore, each 

planting tray contained 3 composite soil samples.  Soil sample dimensions measured 25.4 

X 16.9 cm with a depth of 1.3 cm and a volume of 584.49 cm3.  Samples were kept moist 

with daily watering.  Seedlings were identified, counted, and removed.  Nomenclature for 

all germinable seed pool species followed USDA, NRCS (2009).  Individuals that were 

not identified in the seedling stage were transplanted and fertilized until mature.  

All seed pool samples were not evaluated at the same time due to the high volume 

of samples collected.  The availability of greenhouse space determined the number of 

samples for each germination assay.  Eleven samples representing each treatment 

combination from the 2006 collection were germinated and evaluated for the first and 

second germination assays.  Six samples from the 2006 collection and 11 samples from 

the 2007 collection representing each treatment combination were germinated and 
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evaluated for the third germination assay.  Each germination assay lasted 150 days.  

Emergence was initially censused for 115 days, at which point emergence was noticeably 

reduced.  Samples were then dried out for 14 days to break dormancy and mixed, after 

which watering was resumed and emergence was censused for an additional 21 days.    

The first germination assay ran approximately from mid January to mid June 

2007.  The second germination assay ran from mid June to mid November 2007, and the 

third germination assay ran from mid January to mid June 2008.  It was important that the 

first and third germination assays ran during the same time of year so as to not confound 

treatment effects with potential seasonal effects. 

 
2.5.  Statistical Analysis 
 

To detect treatment effects, non-metric multidimensional scaling (NMDS) of 

Bray-Curtis distance in species composition was employed using the metaMDS function 

in the Vegan package in R version 2.6.2 (Oksanen et al., 2008; R Development Core 

Team, 2008).  Seed densities for each species were used in NMDS.  Stress values were 

assessed to determine the number of dimensions.  Stress is a measure of the mismatch 

between the distance in the original p-dimensional space and the distance in the reduced 

ordination space.  A lower stress indicates a better match between the two distances, and 

a stress < 20 corresponds to a usable and interpretable solution (Clarke, 1993).  All 

figures, regardless of the number of dimensions used, were shown in two dimensions 

because the third dimension did not seem to alter results upon inspection.   

Mixed-model factorial ANOVAs (analysis of variance) were performed using the 

MIXED procedure in SAS version 9.1.3 to determine the effects of restoration treatments 

on seed density of the four most dominant species, Alyssum desertorum, Bromus 



 
 

61 
tectorum, Ceratocephala testiculata, and Poa secunda (SAS Institute, 2003).  Treatment, 

phase, microhabitat and collection time (pre-treatment 2006, post-treatment 2006, and 

post-treatment 2007) were treated as fixed effects, and subplot was a random effect.  

Phase and microhabitat effects were addressed in Chapter 2 and were only included in 

these models to incorporate the design structure and not because they were factors of 

major interest.  The research questions of this chapter addressed treatment effects and not 

microhabitat or community phase effects.  Therefore, results for all significant effects and 

interactions are presented in the Results section, but the interpretation of treatment and 

collection time effects and interactions involving both of these factors are the focus of the 

Results and the Discussion sections.  In particular, a significant treatment x collection 

time interaction was considered indicative of a treatment effect on seed density. 

Not all treatments were represented in each collection time; therefore, subsets of 

the data were analyzed in order to attain complete factorial models.  Model 1 included all 

four treatments and the pre-treatment 2006 and post-treatment 2007 collection times.  

Model 2 included the control and prescribed burn treatments and all three collection 

times.  Statistical significance was set at the 0.05 probability level.   

Data for all models were log-transformed, and least squared means and standard 

errors were back-transformed for figures.  For significant main effects, least squared 

means were compared using Tukey’s test.  For significant interactions, least squared 

means comparisons between treatment combinations sharing at least one factor level 

were made using the False Discovery Rate to control for familywise error rate.   

Sørensen’s similarity index (Cs) and Bray-Curtis (BC) distance were calculated in 

R version 2.6.2 to determine if the germinable seed pool or the aboveground vegetation 
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before treatment was more similar to the aboveground vegetation after treatment (R 

Development Core Team, 2008).  The relative abundance of the seed community before 

treatment was compared to the relative cover of the aboveground community after 

treatment, and the relative cover of the aboveground vegetation was compared before and 

after treatment.  The similarity/distance metrics were calculated for the whole germinable 

seed pool and aboveground vegetation communities, the annual germinable seed pool and 

aboveground vegetation communities, and the perennial germinable seed pool and 

aboveground vegetation communities within each treatment plot.  Sørensen’s similarity is 

based strictly on presence/absence:  Cs=2w/(2w+A+B) where w is the total number of 

species found in both communities, A is the number of species found aboveground, and B 

is the number of species found belowground.  A Cs of 0 represents completely dissimilar 

communities and Cs of 1 represents identical communities at the level of 

presence/absence.  Bray-Curtis distance which incorporates relative abundance 

normalizes relative abundance for communities being compared by dividing the absolute 

differences by the summation:  
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where xij is the relative abundance of species i at community j, xik is the relative 

abundance of species i is at community k, and n is the total number of species.  A BC of 0 

represents most similar communities and a BC of 1 represents most different 

communities.   
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3.  Results 

  
3.1. Treatment effects on germinable seed 

 pool community composition and  
dominant germinable seed pool species 

 
 
3.1.1.  Germinable seed pool community 
 

The NMDS required three dimensions to achieve an acceptable stress level of 

19.80.  Although there was only moderate separation among the four treatments, there 

was a more obvious separation between the pre and post-treatment community 

compositions within each treatment, including the CO treatment, indicating a temporal 

shift in community composition (Fig. 3.1; see Table A.1 and Table A.3 for relative 

abundance of species present in the germinable seed pool community before and after 

treatment implementation).  However, pre-treatment and post-treatment subplots within 

the CO and FI treatments were more similar in terms of community composition than the 

CP and TE treatments, suggesting that fire did not affect community composition as 

much as did tebuthiuron and Plateau.   

 
3.1.2.  Dominant germinable 

seed pool species 
 
ANOVA showed that A. desertorum seed density was not significantly affected 

by treatment but was significantly affected by phase, microhabitat, and collection time for 

model 1 (all treatments, 2 collections times) and collection time and the phase x 

collection time interaction for model 2 (2 treatments, all collection times) (Table 3.1; 

Table 3.2).  A. desertorum seed density was significantly higher in phase 1 communities 

(greater perennial grass cover), beneath shrub microhabitats, and in the pre-treatment 
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2006 collection time for model 1 (Fig. 3.2a; Fig. 3.3a; Fig. 3.4a).  In model 2, A. 

desertorum seed density was significantly higher for the pre-treatment 2006 collection 

time (Fig. 3.5a; Fig. 3.6).  In phase 1 communities, seed densities significantly decreased 

from pre-treatment 2006 to post-treatment 2006 but did not change post-treatment 2007 

(Fig. 3.6).  In phase 3 communities, seed densities also significantly decreased from pre-

treatment 2006 to post-treatment 2006 to a density equal to that in phase 1 communities.  

However, seed density continued to significantly decrease post-treatment 2007 (Fig. 3.6), 

which contributes to the significant interaction.   

B. tectorum seed density was significantly affected by treatment, collection time, 

and the treatment x collection time interaction for model 1 (all treatments, 2 collection 

times) and treatment, collection time, the treatment x microhabitat interaction, the 

treatment x collection time interaction, the microhabitat x collection time interaction, and 

the treatment x microhabitat x collection time interaction for model 2 (2 treatments, all 

collection times) (Table 3.1; Table 3.2).  Pre-treatment 2006 samples had significantly 

higher B. tectorum seed densities than post-treatment 2007 samples, and the CO and CP 

treatments had significantly higher seed densities than the FI and TE treatments (Fig. 

3.4b; Fig. 3.7a; Fig. 3.8a). B. tectorum seed density differed more among treatments in 

the pre-treatment 2006 collection time than the post-treatment 2007 collection time with 

seed densities in the FI and TE treatments being significantly different than densities in 

the CO and CP treatments (Fig. 3.7a).  Seed density significantly decreased from the pre-

treatment 2006 to the post-treatment 2007 collection time in all treatments with the 

greatest decrease in the FI plot (Fig. 3.7a).  For model 2 (2 treatments, all collection 

times), B. tectorum seed density was significantly higher in the CO treatment and the pre-
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treatment 2006 collection time (Fig. 3.9a; 3.5b).   In the pre-treatment 2006 collection 

time, the CO treatment contained more seeds than the FI, but in the post-treatment 2006 

collection time (immediately after the fire) densities of B. tectorum decreased in the FI 

treatment but not the CO treatment. However, in the post-treatment 2007 collection time 

densities were equally low in both treatments yielding a significant treatment x collection 

time interaction (Fig. 3.10a).  The significant treatment x microhabitat x collection time 

interaction showed that beneath shrub microhabitats were more affected by treatment and 

collection time than interspaces.  In the post-treatment 2006 collection time, seed density 

in the CO treatment remained unchanged from pre-treatment 2006.  However, seed 

density significantly decreased in the FI treatment, but only beneath shrubs.  By post-

treatment 2007, seed density decreased to equally low levels for both treatments and both 

microhabitats (Fig. 3.11).   

C. testiculata seed density was significantly affected by treatment, microhabitat, 

collection time, the treatment x phase x microhabitat interaction, and the phase x 

microhabitat x collection time interaction for model 1 (all treatments, 2 collection times) 

and treatment, phase, microhabitat, collection time, the treatment x collection time 

interaction, and the phase x microhabitat x collection time interaction for model 2 (2 

treatments, all collection times) (Table 3.1; Table 3.2).  For model 1, C. testiculata seed 

density was significantly higher in the TE and FI treatments, interspace microhabitats, 

and the pre-treatment 2006 collection time (Fig. 3.8b; Fig. 3.3b; 3.5c). The significant 

treatment x phase x microhabitat interaction in model 1 and the phase x microhabitat x 

collection time interactions in model 1 and model 2 do not directly address my questions 

of interest.  Additionally, these interactions were not explained readily.  The changes that 
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occurred in C. testiculata seed density across combinations of treatment, microhabitat, 

and phase and combinations of phase, microhabitat, and collection time were likely a 

reflection of strong spatial and temporal variation in seed densities (Fig.3.12; Fig. 3.13; 

Fig. 3.16).   For model 2, C. testiculata seed density was significantly higher in the FI 

treatment, phase 3 communities, interspace microhabitats, and the pre-treatment 2006 

collection time (Fig. 3.9b; Fig. 3.14; Fig. 3.15; 3.5c).  The significant treatment x 

collection time interaction showed that the reduction in C. testiculata seed density 

between pre-treatment 2006 and post-treatment 2006 was greater in the FI treatment than 

the CO treatment.  However, in the post-treatment 2007 collection time, density increased 

significantly in the FI treatment but not in the CO treatment (Fig. 3.10b).   

P. secunda seed density was significantly affected by phase, collection time, the 

treatment x collection time interaction, the microhabitat x collection time interaction, and 

the treatment x phase x microhabitat x collection time interaction for model 1 (all 

treatments, 2 collection times) and treatment, the treatment x collection time interaction, 

and the treatment x phase x microhabitat x collection time for model 2 (2 treatments, all 

collection times) (Table 3.1; Table 3.2).  For model 1, P. secunda seed density was 

significantly higher in phase 1 than in phase 3 communities (Fig. 3.2b).  Pre-treatment 

2006 seed densities were significantly higher than post-treatment 2007 seed densities 

(Fig. 3.4d).  In fact, P. secunda seed density was significantly higher in pre-treatment 

2006 samples than in post-treatment 2007 samples in all treatment plots, with the greatest 

difference in density between collection times occurring in the FI plot (Fig. 3.7 b).  

However, seed density did not differ among treatments within each collection time (Fig. 

3.7 b).  The significant treatment x phase x microhabitat x collection time interaction 
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showed that changes in seed density following the pre-treatment 2006 collection time 

varied in a complex manner as a function of treatment, microhabitat, and phase (Fig. 

3.17). Seed densities decreased in the post-treatment 2007 collection and the decrease 

tended to be greater in interspaces than beneath shrubs, although the actual amount of 

reduction depended on both phase and treatment.  The patterns resulting from this 

interaction were not interpreted readily.  For model 2, seed density significantly 

decreased from pre-treatment 2006 to post-treatment 2006 and then remained unchanged 

in the post-treatment 2007 samples; the decrease was greater in the FI treatment than in 

the CO treatment, producing the collection time x treatment interaction (Fig. 3.10c).  The 

significant treatment x collection time interaction seems to be the dominant force driving 

the patterns in the significant 4-way interaction, though the actual response varied 

depending on phase and microhabitat.  The mostly insignificant shifts among phases and 

microhabitats did not reveal a ready explanation (Fig. 3. 18). Interestingly, the only 

evidence for an increase in seed density following a full growing season (post-treatment 

2006 to post-treatment 2007) was in the FI treatment, beneath shrubs, in phase 1 

communities; whether this is biologically meaningful is unclear. 

 
3.2. Similarity between pre-treatment 

germinable seed pool or aboveground  
vegetation and post-treatment vegetation 
 
The pre-treatment vegetation and the post-treatment vegetation were more similar 

than the pre-treatment germinable seed pool and post-treatment vegetation across all 

treatments and within each treatment for annuals, perennials, and both life histories 

combined at the level of species presence/absence according to Sørensen’s similarity (a 

Cs of 0 represents completely dissimilar communities and Cs of 1 represents identical 
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communities at the level of presence/absence) (Table 3.3).  For the pre-treatment 

germinable seed pool-post-treatment vegetation comparison, the perennial community 

was more similar than the annual community across all treatments combined and within 

the FI and TE treatments, whereas the annual community was more similar than the 

perennial community in the CO and CP treatments.  For the pre-treatment vegetation-

post-treatment vegetation comparison, the perennial community was more similar than 

the annual community across all treatments combined and within each treatment 

individually.   

When incorporating relative abundance, Bray-Curtis distance showed a similar trend 

where the pre-treatment vegetation and the post-treatment vegetation were more similar 

than the pre-treatment germinable seed pool and post-treatment vegetation (a BC of 0 

represents most similar communities and a BC of 1 represents most different 

communities) (Table 3.4).  This trend occurred across all treatments and within the CO, 

CP, and TE treatments for annuals, perennials, and both life histories combined, and 

within the FI treatment for annuals (Table 3.4).  However, the pre-treatment-germinable 

seed pool and the post-treatment vegetation were more similar than the pre-treatment 

vegetation and post-treatment vegetation in the FI treatment for the perennials.  For the 

pre-treatment germinable seed pool-post-treatment vegetation comparison, the perennial 

community was more similar than the annual community in the CP, FI, and TE 

treatments, whereas the annual community was more similar than the perennial 

community across all treatments and within the CO treatment.  For the pre-treatment 

vegetation-post-treatment vegetation comparison, the perennial community was more 

similar than the annual community across all treatments and within the CO, CP, and TE 
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treatments, whereas the annual community was more similar than the perennial 

community in the FI treatment.   

 
4.  Discussion 
 
 
4.1.  Treatment and collection time effects   

NMDS results showed a moderate distinction among treatments suggesting spatial 

variability in germinable seed pool composition.  Desert germinable seed pools often 

reveal a high degree of spatial heterogeneity (Henderson et al., 1988; Coffin and 

Lauenroth, 1989; Kemp, 1989).  However, the NMDS plot showed a more obvious 

distinction between pre-treatment and post-treatment communities for all individual 

treatments.  This result indicates a shift in community composition from before to after 

treatment.  Disturbances such as restoration treatments may alter the community 

composition of the germinable seed pool (Stark et al., 2006).  In the present study, 

tebuthiuron and Plateau seem to have affected germinable seed pool composition while 

fire did not as indicated by the greater distance between pre-treatment and post-treatment 

subplots in tebuthiuron and Plateau than in prescribed burn and control which were 

similar.  It is not surprising that Plateau would alter the germinable seed pool community 

composition given that it tends to have greater effects on annuals than on perennials and 

that there is extensive variation among perennial species in sensitivity (Shinn and Thill, 

2002; Sheley et al., 2007). However, the apparent shift in community composition 

following tebuthiuron application is surprising. Although this result may be an artifact, it 

strongly suggests a need for further research on the effect of tebuthiuron on seeds.  

The difference in collection time could also be driving this shift in community 



 
 

70 
composition and would explain why shifts occurred in all treatments, even the CO 

treatment.  The germinable seed pool can vary greatly depending on season and year 

(Thompson and Grime, 1979; Coffin and Lauenroth, 1989).  Yearly climate variability 

affects seed production, dispersal patterns, seed predation, and germination from the 

germinable seed pool, all of which can alter germinable seed pool community 

composition (Went, 1949; Brown et al., 1975; Chambers and MacMahon, 1994).  

Temperatures between 2006 and 2007 did not differ much; however, 2007 was drier than 

2006, especially in April (Table A.5; Table A.6).  Seed reserves do change over time 

(Thompson and Grime, 1979; Henderson et al., 1988; Coffin and Lauenroth, 1989), and 

in this study, changes in seed reserves may be due to the changes in precipitation between 

2006 and 2007, with different species responding differently to the decreased 

precipitation in 2007, resulting in different germinable seed pool communities. 

Evaluating the treatment x collection time interaction for the dominant germinable 

seed pool species may reveal if treatments affected seed densities.  Although fire did not 

seem to alter germinable seed pool species compositions, in model 1 (all treatments, 2 

collection times), fire (and fire only) did appear to alter both B. tectorum and P. secunda 

seed densities one growing season after treatment.  The changes in both B. tectroum and 

P. secunda seed density after one growing season for the CP and TE treatment were less 

than the changes in density for the CO treatment suggesting that Plateau and tebuthiuron 

did not impact seed density for either species.  In contrast, changes in seed density 

between 2006 and 2007 were greater in the FI than in the CO treatments, implying that 

fire decreased seed densities for both B. tectorum and P. secunda.  The short-term 

response of B. tectorum to fire concurs with the findings of Hassan and West (1986). Fire 
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can initially reduce germinable seed pools of B. tectorum by killing a large proportion of 

the seeds (Hassen and West, 1986; Young et al., 1987; Humphrey and Schupp, 2001).   

Model 2 (2 treatments, all collections times) results demonstrate that fire 

immediately reduced B. tectorum seed densities beneath shrubs but not in interspaces, 

likely because of the greater fuel load (litter) beneath shrubs.  As in other studies, these 

results indicate that fire kills cheatgrass seeds beneath shrub due to shrubs burning 

(Young and Evans, 1976, 1978; Young et al., 1976).  In addition, fire may not kill as 

many seeds in interspaces because the lack of litter makes fires less intense (Young et al., 

1976; Young and Evans, 1978).  Studies have shown that seeds that do survive fire may 

produce more vigorous plants which can in turn replenish the germinable seed pool in 

one growing season (Hassen and West, 1986; Young et al., 1987; Humphrey and Schupp, 

2001).  However, there was no evidence of an increase in B. tectorum seed density after 

one growing season in the present study, probably because of the dry year, especially 

spring, in 2007.     

Although aboveground cheatgrass density can increase 11 years after tebuthiuron 

application (Blumenthal et al., 2006), the immediate effects of this herbicide on 

cheatgrass germinable seed pools remains unknown.  Results from Model 1 do not 

provide evidence of tebuthiuron reducing cheatgrass germinable seed pools.  

Interestingly, Plateau, a pre-emergent herbicide designed to target annuals, did not reduce 

cheatgrass seed density.  Thus, if Plateau reduced emergence of cheatgrass and the other 

dominant annual C. testiculata, it did not reduce it enough to affect population-level seed 

production.  Although little is known about C. testiculata growth and reproduction, B. 

tectorum is extremely plastic in growth and has been shown to compensate extremely 
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well for reduced density with increased per capita growth and seed production (Palmblad, 

1968).   

Model 2 (2 treatments, all collection times) also showed a decrease in P. secunda 

and C. testiculata seed densities immediately after fire.  Seed densities remained the same 

after one growing season for P. secunda, while the results for C. testiculata depended on 

treatment.  C. testiculata seed density increased one growing season after the fire but 

remained the same in the control.  The effect of fire on P. secunda seed density is not 

well documented, but reductions in P. secunda seedling emergence after fire has been 

observed (Champlin, 1982).  In addition, Hassan and West have reported smaller Poa 

spp. germinable seed pools in burned plots (1986).  Therefore, fire may have reduced 

P.secunda seed densities.  The effect of fire on C. testiculata seed density remains largely 

unknown but results from this research suggest that fire reduces C. testiculata seed 

density, but that density can increase fairly quickly in the high-resource conditions 

following fire.   

 The significant treatment main effect for B. tectorum and C. testiculata suggests 

that seed densities of these two species vary spatially.  B. tectorum seed density was 

significantly higher in the CO and CP treatments than the FI and TE treatments for model 

1 and significantly higher in the CO than the FI treatment in model 2.  C. testiculata seed 

density was significantly higher in the FI and TE treatments than the CO and CP for 

model 1 and significantly higher in the FI than the CO treatments in model 2.  CO and CP 

treatment plots are in reality in the same plot so it is not surprising that they have similar 

densities, at least pre-treatment.      

All species responded to variation in collection time.  For all species and in both 
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models, pre-treatment 2006 seed densities were significantly higher than the other 

collection times.  Seeds collected in the fall of 2006 (post-treatment 2006) might exhibit a 

different degree of dormancy that did not break as easily, which would explain the 

immediate post-treatment decrease in seed density in the control treatment, even though 

the reduction was not as great as in the prescribed burn for at least some species.  

However, this does not clarify why seed densities were low in the summer of 2007 (post-

treatment 2007).  Similar to the differences in community composition between 

collection times, seed densities of all species could vary temporally due to variation in 

environmental conditions, specifically the decrease in precipitation between 2006 and 

2007.  Water stress could be limiting plant growth and seed production resulting in lower 

seed densities in 2007 relative to 2006 when precipitation was higher.  Other studies have 

attributed lower seed production to water stress (French and Turner, 1991; Munns, 2002).  

Another possibility is that greenhouse conditions were more favorable in the first two 

germination assays resulting in higher germination rates and ultimately higher seed 

densities for the pre-treatment 2006 collection time since a greater proportion of pre-

treatment 2006 samples were represented in the first two germination assays.  However, 

given the very large differences in densities between pre-treatment 2006 and post-

treatment 2007 samples it is unlikely that this can be the sole explanation. 

 
4.2.  Similarity between germinable 

seed pool or aboveground vegetation  
and post-treatment vegetation 
 
As indicated by both Sørensen’s similarity and Bray-Curtis distance, the post-

treatment vegetation community was more similar to the pre-treatment vegetation 

community than to the germinable seed pool community.  This result is not surprising 
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considering that the pre-treatment vegetation contains many individuals that will remain 

present aboveground the following year.  Also, the pre-existing vegetation represents 

those species that can germinate and establish while the germinable seed pool contains 

seeds that may or may not germinate.  For example, a number of wetland species 

(Polypogon monspeliensis, Tamarix ramosissima, Typha spp., Veronica anagallis-

aquatica; Table A.1; Table A.3) were present in the germinable seed pool but were not 

represented aboveground (Table A.2; Table A.4), most likely due to unfavorable 

germination conditions in the field.  However, the pre-treatment germinable seed pool 

and the post-treatment vegetation were more similar than the pre-treatment vegetation 

and post-treatment vegetation in the FI treatment for the perennials according to Bray 

Curtis distance.  The fire reduced aboveground vegetation biomass substantially.  

Therefore the pre-treatment germinable seed pool could have been more similar to the 

post-treatment vegetation because the changes in aboveground biomass before and after 

fire were greater.  The reduction in vegetation in combination with perennials not 

recovering quickly after fire could cause a dissimilarity in the pre- and post-treatment 

vegetation communities. 

The annual germinable seed pool and vegetation communities were more similar 

than the perennial community in CO and CP treatments according to Sørensen’s 

similarity index and across all treatments combined and within the CO treatment 

according to Bray-Curtis distance.  Each year in an annual-dominated community the 

seedlings germinate from the available germinable seed pool which reflects vegetation of 

the previous year (Osem et al., 2006).  However, both the similarity and distance metrics 

showed the majority of perennial germinable seed pool-post-treatment vegetation 
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comparisons being more similar the annual germinable seed pool-post-treatment 

vegetation comparisons.  This result does not strongly support findings from previous 

studies that document plant communities dominated by perennial species having lower 

aboveground-belowground similarities than communities dominated by annuals 

(Thompson and Grime, 1979; Ungar and Woodell, 1993; Milberg, 1995; Bakker et al., 

1996; Osem et al., 2006).  However most of these studies are not assessing the 

relationship between the germinable seed pool of one year and aboveground vegetation of 

a different year. These generalizations developed from previous studies may not apply to 

the present study.  Additionally, germination conditions in the field might not have been 

suitable for annuals so seeds remained dormant in the germinable seed pool.  Annual 

seeds may have more selective germination requirements because these plants only 

produce seeds once (Jurado and Flores, 2005).  Thus, if environmental conditions were 

unfavorable for annual germination, more annuals would be represented belowground 

than aboveground.  Therefore the annual germinable seed pool and vegetation may differ 

more than the perennial germinable seed pool and vegetation.   

In general, the perennial pre-treatment and post-treatment vegetation was also 

more similar than the annual pre-treatment and post-treatment vegetation.  This result is 

not unusual since perennials can remain aboveground for multiple years while annuals 

may die after one growing season.  Therefore the annual community aboveground is 

expected to change more over time.  However, Bray-Curtis distance showed that the 

annual vegetation before and after treatment was more similar than the perennial 

vegetation before and after treatment in the FI treatment.  The majority of aboveground 

biomass was destroyed by the fire.  It is not surprising that the annuals recovered more 
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quickly in cover following fire.     

In conclusion, the germinable seed pool community composition shifted 

following restoration treatment application in all treatment plots, but especially in the 

tebuthiuron and Plateau plots.  These results suggest that the germinable seed pool 

composition varied spatially and temporally, and tebuthiuron and Plateau may have 

affected germinable seed pool composition while fire did not.  However, prescribed burn 

did reduce B. tectorum, P. secunda, and C. testicultata seed densities.  There was no 

evidence of tebuthiuron or Plateau affecting seed densities of dominant species, which 

suggests that the potential effects of tebuthiuron on germinable seed pool community 

composition might be an artifact and that if Plateau reduced annual emergence it was not 

enough to reduce population-level seed production.  All four dominant species were 

affected by collection time where pre-treatment 2006 samples had higher seed densities 

than the other collection times, suggesting temporal variability in seed density.  The post-

treatment vegetation community was more similar to the pre-treatment vegetation than 

the pre-treatment germinable seed pool community, which suggests that the pre-existing 

vegetation may be a better indicator of the vegetation community following restoration 

than the germinable seed pool community.  
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Table 3.1  Model 1 P-values for fixed effects for seed density of A. desertorum (ALDE), 
B. tectorum (BRTE), C. testiculata (CETE5), and P. secunda (POSE).  Significant P-
values at the 0.05 level are indicated in bold. 
 
 
Fixed effect ALDE BRTE CETE5 POSE 
treatment  0.1584 <0.0001 <0.0001  0.6399 
phase  0.0146  0.1273 0.0720  0.0432 
treatment*phase  0.0785  0.1062 0.4840  0.6979 
microhabitat  0.0358  0.3251  0.0007  0.8827 
treatment*microhabitat  0.7172  0.5568  0.2338 0.9860 
phase*microhabitat  0.6275  0.4941  0.1393 0.5640 
treatment*phase*microhabitat  0.8267  0.8935  0.0015  0.8932 
collection time <0.0001 <0.0001 <0.0001 <0.0001 
treatment*collection time  0.6678  0.0002  0.3114  0.0541 
phase*collection time  0.6909  0.9437  0.1248  0.2766 
treatment*phase*collection time  0.8197  0.7021  0.2414  0.4228 
microhabitat*collection time 0.7250  0.0615  0.4922  0.0303 
treatment*microhabitat*collection time  0.9197  0.7869 0.0760  0.3103 
phase*microhabitat*collection time  0.3875  0.5953  0.0011 0.3960 
treatment*phase*microhabitat*collection time  0.8088  0.1472  0.8575  0.0344 
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Table 3.2  Model 2 P-values for fixed effects for seed density of A. desertorum (ALDE), 
B. tectorum (BRTE), C. testiculata (CETE5), and P. secunda (POSE).  Significant P-
values at the 0.05 level are indicated in bold. 
 
 
Fixed effect ALDE BRTE CETE5 POSE 
treatment  0.0843  0.0002  0.0074  0.8748 
phase  0.0645  0.2530  0.0435  0.6928 
treatment*phase  0.1963  0.6461  0.5006  0.1516 
microhabitat  0.9840  0.8190  0.0121  0.3870 
treatment*microhabitat  0.0564  0.0251  0.0595  0.4973 
phase*microhabitat  0.5556  0.4177  0.4233  0.9318 
treatment*phase*microhabitat  0.5156  0.4827  0.3996  0.5969 
collection time <0.0001 <0.0001 <0.0001 <0.0001 
treatment*collection time  0.5030  0.0001  0.0032  0.0233 
phase*collection time  0.0511  0.9513  0.1638  0.1165 
treatment*phase*collection time  0.8608  0.2169  0.8982  0.3702 
microhabitat*collection time  0.0727  0.0173  0.5162  0.1962 
treatment*microhabitat*collection time  0.3807  0.0103  0.7288  0.2322 
phase*microhabitat*collection time  0.8377  0.8759  0.0012  0.5836 
treatment*phase*microhabitat*collection time  0.4097  0.0818  0.2932  0.0179 

 



Table 3.3  Sørensen’s similarity index (Cs) comparing the presence/absence of species in the seed pool community before treatment to 
the presence/absence of species in the aboveground community after treatment, and the presence/absence of species in the 
aboveground vegetation before and after treatment for the annual community, perennial community, and both annual and perennial 
communities.  Cs was calculated for all treatments combined and each treatment separately.  A Cs of 0 represents completely 
dissimilar communities and Cs of 1 represents identical communities at the level of presence/absence.   
 
 

Life History Comparison All 
treatments CO CP FI TE 

Annual  
pre-treatment seed pool-     
post-treatment vegetation 0.4474 0.5000 0.4000 0.5000 0.3750 

Annual  
pre-treatment vegetation-    
post-treatment vegetation 0.6667 0.6000 0.6667 0.7273 0.6667 

Perennial 
pre-treatment seed pool-     
post-treatment vegetation 0.4545 0.3571 0.2727 0.6667 0.6000 

Perennial 
pre-treatment vegetation-    
post-treatment vegetation 0.8378 0.7619 0.8000 0.8750 0.9412 

Both 
pre-treatment seed pool-     
post-treatment vegetation 0.4540 0.4255 0.3333 0.5789 0.5000 

Both 
pre-treatment vegetation-    
post-treatment vegetation 0.7788 0.7097 0.7586 0.8148 0.8462 
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Table 3.4  Bray-Curtis distance (BC) comparing the relative abundance of the seed pool community before treatment to the relative 
cover of the aboveground community after treatment, and the relative cover of the aboveground vegetation before and after treatment 
for the annual community, perennial community, and both annual and perennial communities.  BC was calculated for all treatments 
combined and each treatment separately.  A BC of 0 represents most similar communities and a BC of 1 represents most different 
communities.   
 
 
 

Life History Comparison All 
treatments CO CP FI TE 

Annual  
pre-treatment seed pool-     
post-treatment vegetation 0.6612 0.4888 0.8295 0.5423 0.7316 

Annual  
pre-treatment vegetation-    
post-treatment vegetation 0.4053 0.2853 0.5383 0.3580 0.4736 

Perennial 
pre-treatment seed pool-     
post-treatment vegetation 0.6868 0.8018 0.7411 0.3830 0.5802 

Perennial 
pre-treatment vegetation-    
post-treatment vegetation 0.2922 0.2706 0.2244 0.5399 0.1876 

Both 
pre-treatment seed pool-     
post-treatment vegetation 0.6453 0.5781 0.8031 0.4927 0.6750 

Both 
pre-treatment vegetation-    
post-treatment vegetation 0.3289 0.2752 0.3229 0.4712 0.2720 
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Figure 3.1  Non-metric multidimensional scaling (NMDS) ordination plot of the 
germinable seed pool community.  Points represent the subplot scores.  Species scores are 
represented by species symbols (USDA, NRCS, 2009).  Open symbols represent the pre-
treatment community and solid symbols represent the post-treatment community. 
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Figure 3.2  Model 1 mean seed density of (a) A. desertorum and (b) P. secunda (+ 1 SE) 
as affected by community phase.  Different letters indicate significant differences within 
each species (P < 0.05).      
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Figure 3.3  Model 1 mean seed density of (a) A. desertorum and (b) C. testiculata (+ 1 
SE) as affected by microhabitat.  Different letters indicate significant differences within 
each species (P < 0.05).      
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Figure 3.4  Model 1 mean seed density of (a) A. desertorum, (b) B. tectorum, (c) C. 
testiculata, and (d) P. secunda (+ 1 SE) as affected by collection time.  Different letters 
indicate significant differences within each species (P < 0.05).      
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Figure 3.5  Model 2 mean seed density of (a) A. desertorum, (b) B. tectorum, (c) C. 
testiculata, and (d) P. secunda (+ 1 SE) as affected by collection time.  Different letters 
indicate significant differences within each species (P < 0.05).      
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Figure 3.6  Model 2 mean seed density of A. desertorum (+ 1 SE) as affected by 
community phase and collection time.  Different letters indicate significant differences 
for comparisons between treatment combinations sharing at least one factor level (P < 
0.05). 
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Figure 3.7  Model 1 mean seed density of (a) B. tectorum and (b) P. secunda (+ 1 SE) as 
affected by collection time and treatment (CO = Control, CP = Control-Plateau, FI = 
Prescribed Burn, TE = Tebuthiuron).  Different letters indicate significant differences for 
comparisons between treatment combinations sharing at least one factor level (P < 0.05). 
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Figure 3.8  Model 1 mean seed density of (a) B. tectorum and (b) C. testiculata (+ 1 SE) 
as affected by treatment (CO = Control, CP = Control-Plateau, FI = Prescribed Burn, TE 
= Tebuthiuron).  Different letters indicate significant differences within each species (P < 
0.05).      
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Figure 3.9  Model 2 mean seed density of (a) B. tectorum and (b) C. testiculata (+ 1 SE) 
as affected by treatment (CO = Control, FI = Prescribed Burn).  Different letters indicate 
significant differences within each species (P < 0.05). 
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Figure 3.10  Model 2 mean seed density of (a) B. tectorum, (b) C. testiculata, and (c) P. 
secunda (+ 1 SE) as affected by collection time and treatment (CO = Control, FI = 
Prescribed Burn).  Different letters indicate significant differences for comparisons 
between treatment combinations sharing at least one factor level within each species (P < 
0.05). 
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Figure 3.11  Model 2 mean seed density of B. tectorum (+ 1 SE) as affected by 
microhabitat, collection time, and treatment (CO = Control, FI = Prescribed Burn).  
Different letters indicate significant differences for comparisons between treatment 
combinations sharing at least one factor level (P < 0.05). 
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Figure 3.12  Model 1 mean seed density of C. testiculata (+ 1 SE) as affected by phase, 
microhabitat, and treatment (CO = Control, CP = Control-Plateau, FI = Prescribed Burn, 
TE = Tebuthiuron).  Different letters indicate significant differences for comparisons 
between treatment combinations sharing at least one factor level (P < 0.05). 
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Figure 3.13  Model 1 mean seed density of C. testiculata (+ 1 SE) as affected by phase, 
microhabitat, and collection time.  Different letters indicate significant differences 
comparisons between treatment combinations sharing at least one factor level (P < 0.05). 
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Figure 3.14  Model 2 mean seed density C. testiculata (+ 1 SE) as affected by 
community phase.  Different letters indicate significant differences (P < 0.05). 
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Figure 3.15  Model 2 mean seed density C. testiculata (+ 1 SE) as affected by 
microhabitat.  Different letters indicate significant differences (P < 0.05). 
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Figure 3.16  Model 2 mean seed density of C. testiculata (+ 1 SE) as affected by phase, 
microhabitat, and collection time.  Different letters indicate significant differences 
comparisons between treatment combinations sharing at least one factor level (P < 0.05). 
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Figure 3.17  Model 1 mean seed density of P. secunda (+ 1 SE) as affected by phase, 
microhabitat, collection time, and treatment (CO = Control, CP = Control-Plateau, FI = 
Prescribed Burn, TE = Tebuthiuron).  Different letters indicate significant differences 
comparisons between treatment combinations sharing at least one factor level (P < 0.05). 
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Figure 3.18  Model 2 mean seed density of P. secunda (+ 1 SE) as affected by phase, 
microhabitat, collection time, and treatment (CO = Control, FI = Prescribed Burn) .  
Different letters indicate significant differences comparisons between treatment 
combinations sharing at least one factor level (P < 0.05). 
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CHAPTER 4 

CONCLUSION 

 
Degraded sagebrush communities in the Great Basin are at risk of conversion to 

cheatgrass-dominated systems.  Habitat degradation has been a result of agricultural use, 

livestock grazing, exotic grass invasion, and altered fire regime (D’Antonio and 

Vitousek, 1992; Anderson and Inouye, 2001; Hemstrom et al., 2002).  Great Basin 

restoration strategies often involve a disturbance such as prescribed fire or herbicide that 

reduces shrub abundance making resources more available.  Disturbances can also 

activate the seed pool by creating opportunities for regeneration and germination of seeds 

from the seed pool (Kotanen, 1996; Bakker et al., 1996).  The seed pool can serve as an 

important source of new propagules following restoration (Nishihiro et al., 2006).  

However, prior to this study, the effects of aboveground vegetation variables and 

restoration treatments on seed pools within the Great Basin have not been well 

documented. 

In Chapter 2, I examined the influence of the aboveground vegetation on seed 

density, species richness, and seed pool community composition.  The relationship 

between the seed pool and aboveground vegetation compositions differed according to 

the aboveground vegetation organizational level used for comparisons.  When 

comparison between the two communities were made on the species level (using 

Sørensen’s similarity index and Bray-Curtis distance) the seed pool and aboveground 

vegetation were dissimilar.  In contrast, when using functional groups as the aboveground 

organizational level (in NMDS), the seed pool and the aboveground vegetation were 

moderately similar.   
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The effects of microhabitat (shrub interspace or beneath shrub) and aboveground 

community phase (high or low perennial bunchgrass cover) were also assessed.  Shrubs 

were the only functional group affected by microhabitat alone with seed density being 

greater beneath shrubs than in interspaces, as expected.  However seed density between 

micohabitat was influenced by plot, which demonstrates spatial variability in seed 

distributions.  Total seed density, as well as annual forb, perennial grass, and P. secunda 

seed densities were higher in communities with higher perennial bunchgrass cover (phase 

1 communities) than in communities with lower perennial bunchgrass cover (phase 3 

communities).  Variation in species richness was not well explained by microhabitat or 

community phase but appeared to vary spatially.   

Chapter 3 evaluated the effects of restoration treatments on the seed pool as well 

as determined whether the pre-treatment seed pool or the aboveground vegetation was 

more similar to the vegetation following restoration.  Both herbicides (tebuthiuron and 

Plateau) may have altered the community composition.  In addition, the seed pool varied 

temporally as indicated by distinct pre-treatment and post-treatment communities in all 

treatments, including the control.  Prescribed burn decreased seed densities of B. 

tectorum, C. testiculata, and P. secunda.  The timing of soil seed pool collection did 

affect all four dominant species, Alyssum desertorum, Bromus tectorum, Ceratocephala 

testiculata, and Poa secunda.  Collections before treatment (pre-treatment 2006) 

contained significantly more seeds than any other collection time which was likely due to 

temporal variability in the seed pool.  Lastly, the post-treatment vegetation community 

was more similar to the pre-treatment vegetation community than the pre-treatment seed 

pool community, suggesting that the pre-existing vegetation is a better indicator of the 
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vegetation following restoration than the seed pool. 

One common theme throughout this research was the variability in the seed pool, 

both spatially and temporally.  This variability makes it difficult to develop 

generalization about Great Basin seed pool communities.  Nonetheless, I have provided 

evidence that aboveground vegetation variables do play a role in soil seed pool dynamics.  

Initial effects of restoration showed herbicides may have altered the seed pool community 

whereas prescribed fire decreased seed densities.  However the long-term contribution of 

the seed pool to the aboveground still remains unclear.  A long-term seed pool study may 

help determine how the effects of restoration treatments on the seed pool community 

influence the vegetation response to restoration.   
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Table A.1  Relative abundance of species present in the germinable seed pool community 
prior to treatment implementation. 
 
 
Species Symbol Relative abundance Functional group 
Ceratocephala testiculata cete5 40.5066 annual forb 
Alyssum desertorum alde 24.1800 annual forb 
Poa secunda pose 14.0844 perennial grass 
Bromus tectorum brte  8.6232 annual grass 
Elymus elymoides elel5  2.8235 perennial grass 
Descurainia incana ssp. incisa  deini2  2.1972 annual forb 
Artemisia tridentata ssp. wyomingensis  artrw8  2.1647 shrub 
Vulpia octoflora vuoc  1.5161 annual grass 
Sisymbrium altissimum sial2  1.2608 annual forb 
Erodium cicutarium erci6  1.0447 annual forb 
Typha spp. typha  0.1705 perennial forb 
Sphaeralcea munroana spmu2  0.1294 perennial forb 
Conyza canadensis coca5  0.1287 annual forb 
Lactuca serriola lase  0.1202 annual forb 
Epilobium ciliatum epci  0.1187 perennial forb 
Draba cuneifolia drcu  0.1021 annual forb 
Sonchus oleraceus sool  0.0941 annual forb 
Achnatherum hymenoides achy  0.0926 perennial grass 
Juncus arcticus ssp. littoralis juarl  0.0534 perennial forb 
Pascopyrum smithii pasm  0.0463 perennial grass 
Veronica anagallis-aquatica vean2  0.0421 perennial forb 
Atriplex confertifolia  atco  0.0401 shrub 
Lappula occidentalis laoco  0.0395 annual forb 
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Table A.1 continued  Relative abundance of species present in the germinable seed pool 
community prior to treatment implementation. 
 
 
Species Symbol Relative abundance Functional group 
Arabis perennans arpe2  0.0390 perennial forb 
Festuca idahoensis feid  0.0342 perennial grass 
Taraxacum officinale taof  0.0325 perennial forb 
Descurainia sophia deso2  0.0291 annual forb 
Marrubium vulgare mavu  0.0267 perennial forb 
Pseudoroegneria spicata pssp6  0.0265 perennial grass 
Tamarix ramosissima tara  0.0254 tree 
Camissonia spp. camis  0.0242 annual forb 
Digitaria sanguinalis disa  0.0188 annual grass 
Cirsium spp. cirsi  0.0183 perennial forb 
Nicotiana attenuata niat  0.0159 annual forb 
Matricaria discoidea madi6  0.0158 annual forb 
Opuntia polyacantha oppo  0.0154 shrub 
Tragopogon dubius trdu  0.0151 annual forb 
Lepidium perfoliatum lepe2  0.0131 anuual forb 
Sphaeralcea grossulariifolia spgr2  0.0127 perennial forb 
Hordeum jubatum hoju  0.0125 perennial grass 
Setaria verticillata seve3  0.0123 annual grass 
Juncus bufonius jubu  0.0096 annual forb 
Physaria spp. physa2  0.0083 annual forb 
Polypogon monspeliensis pomo5  0.0062 annual grass 
Gnaphalium palustre gnpa  0.0056 annual forb 
Gilia spp. gilia  0.0040 annual forb 
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Table A.2  Relative abundance of species present in the aboveground community prior to 
treatment implementation. 
 
 
Species Symbol Relative cover Functional group 
Artemisia tridentata ssp. wyomingensis  artrw8 29.2396 shrub 
Poa secunda pose 16.1771 perennial grass 
Bromus tectorum brte 13.0729 annual grass 
Elymus elymoides elel5 10.4271 perennial grass 
Ceratocephala testiculata cete5 10.3229 annual forb 
Lepidium lasiocarpum lela  4.6042 annual forb 
Pascopyrum smithii  pasm  2.3646 perennial grass 
Achnatherum hymenoides achy  1.5000 perennial grass 
Atriplex confertifolia  atco  0.5729 shrub 
Descurainia incana ssp. incisa  deini2  0.5000 annual forb 
Ipomopsis congesta ipco5  0.3021 perennial forb 
Sisymbrium altissimum sial2  0.1667 annual forb 
Leymus cinereus  leci4  0.0833 perennial grass 
Chrysothamnus viscidiflorus chvi8  0.0729 shrub 
Sphaeralcea munroana spmu2  0.0625 perennial forb 
Opuntia polyacantha oppo  0.0625 shrub 
Juniperus osteosperma juos  0.0417 tree 
Sphaeralcea grossulariifolia spgr2  0.0313 perennial forb 
Unidentified annual exotic forb ukfe2  0.0104 annual forb 
Astragalus eurekensis aseu4  0.0104 perennial forb 
Lathyrus pauciflorus lapau  0.0104 perennial forb 
Unidentified annual exotic forb ukhe1  0.0104 annual forb 
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Table A.3  Relative abundance of species present in the germinable seed pool community 
after treatment implementation. 
 
 
Species Symbol Relative abundance Functional group 
Ceratocephala testiculata cete5 32.4159 annual forb 
Poa secunda pose 22.1622 perennial grass 
Alyssum desertorum alde 20.2713 annual forb 
Bromus tectorum brte 5.7618 annual grass 
Descurainia incana ssp. incisa  deini2 5.6692 annual forb 
Artemisia tridentata ssp. wyomingensis  artrw8 3.9586 shrub 
Elymus elymoides elel5 2.5891 perennial grass 
Sisymbrium altissimum sial2 1.5297 annual forb 
Vulpia octoflora vuoc 1.3613 annual grass 
Achnatherum hymenoides achy 0.5473 perennial grass 
Pseudoroegneria spicata pssp6 0.4104 perennial grass 
Lactuca serriola lase 0.4009 annual forb 
Typha spp. typha 0.3805 perennial forb 
Taraxacum officinale taof 0.3108 perennial forb 
Camissonia spp. camis 0.2976 annual forb 
Sonchus oleraceus sool 0.2855 annual forb 
Epilobium ciliatum epci 0.2136 perennial forb 
Arabis perennans arpe2 0.1329 perennial forb 
Lappula occidentalis laoco 0.1268 annual forb 
Sphaeralcea munroana spmu2 0.1228 perennial forb 
Juncus arcticus ssp. littoralis juarl 0.1186 perennial forb 
Agropyron cristatum agcr 0.1092 perennial grass 
Conyza canadensis coca5 0.1004 annual forb 
Draba cuneifolia drcu 0.0909 annual forb 
Tamarix ramosissima tara 0.0757 tree 
Descurainia sophia deso2 0.0694 annual forb 
Nicotiana attenuata niat 0.0533 annual forb 
Erodium cicutarium erci6 0.0531 annual forb 
Apocynum androsaemifolium apan2 0.0496 perennial forb 
Pascopyrum smithii pasm 0.0481 perennial grass 
Veronica anagallis-aquatica vean2 0.0457 perennial forb 
Salsola kali saka 0.0446 annual forb 
Polygonum persicaria pope3 0.0332 annual forb 
Symphyotrichum falcatum syfaf 0.0332 perennial forb 
Hordeum jubatum hoju 0.0258 perennial grass 
Matricaria discoidea madi6 0.0258 annual forb 
Cirsium spp. cirsi 0.0223 perennial forb 
Gilia spp. gilia 0.0195 annual forb 
Quercus spp. querc 0.0187 tree 
Opuntia polyacantha oppo 0.0144 shrub 

 



 
 

115 
Table A.4  Relative abundance of species present in the aboveground community after 
treatment implementation. 
 
 
Species Symbol Relative cover Functional group 
Artemisia tridentata ssp. wyomingensis  artrw8 18.6889 shrub 
Ceratocephala testiculata cete5 8.8556 annual forb 
Bromus tectorum brte 8.4111 annual grass 
Poa secunda pose 8.3333 perennial grass 
Elymus elymoides elel5 3.6333 perennial grass 
Alyssum desertorum alde 2.0667 annual forb 
Pascopyrum smithii  pasm 1.4889 perennial grass 
Achnatherum hymenoides achy 0.9889 perennial grass 
Ipomopsis congesta ipco5 0.3333 perennial forb 
Atriplex confertifolia  atco 0.2333 shrub 
Sisymbrium altissimum sial2 0.0778 annual forb 
Lathyrus pauciflorus lapau 0.0444 perennial forb 
Opuntia polyacantha oppo 0.0444 shrub 
Descurainia incana ssp. incisa  deini2 0.0444 annual forb 
Lepidium perfoliatum lepe2 0.0333 annual forb 
Juniperus osteosperma juos 0.0222 tree 
Leymus cinereus  leci4 0.0222 perennial grass 
Cryptantha spp. crypt 0.0111 annual forb 
Chrysothamnus viscidiflorus chvi8 0.0111 shrub 
Tetradymia canescens teca2 0.0111 shrub 
Allium spp. alliu 0.0111 perennial forb 

 
 
 
 
 
 
 



Table A.5  Monthly and annual total precipitation averages (mm) measured by regional climate stations nearest to the Onaqui site.  
Blank cells indicate missing data. 
 
 

Station Year  Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec 
 

Annual 
Tooele, UT 2000 44.96 61.48 39.87 49.02 42.67 1.27 12.44 34.78 62.99 74.43 23.11 21.85 468.87 
Tooele, UT 2001 23.88 41.9 73.65 61.2 8.13 18.54 50.03 14.48 8.13 17.52 67.04 56.14 440.64 
Tooele, UT 2002 23.87 4.57 56.13 87.11 23.37 10.42 10.91 2.03 51.82 41.92 25.15 8.12 345.42 
Tooele, UT 2003 21.09 40.12 65.52 48.25 44.45 22.62 4.32 5.84 3.05 12.7 34.79 90.69 393.44 
Tooele, UT 2004 16.76 117.09 18.28 85.1 27.19 20.06 4.06 11.43 20.07 92.72 31.23 7.37 451.36 
Tooele, UT 2005 73.15 45.21 74.42 67.06 191.28 30.99 0 10.93 14.47 27.95 24.13 29.73 589.32 
Tooele, UT 2006 70.62 28.19 83.07 75.18 18.03 21.84 41.13 10.16 52.57 57.65 15.75 33.78 507.97 
Tooele, UT 2007 42.92 45.22 64.76 9.9 22.61 18.04 56.13 14.48 41.91 28.19 11.94 82.54 438.64 
Grantsville, UT 2000 25.39 44.44 10.41 22.6 22.85 0.76 10.92 49.52 47 45.46 11.93 9.65 300.93 
Grantsville, UT 2001 9.4 19.81  21.08 1.27 3.81 39.38 8.88 6.85 4.57 39.12 23.87  
Grantsville, UT 2002 6.61 0.76 23.38 43.92 14.73 2.54 14.73 3.56 24.9 14.48 23.35 6.86 179.82 
Grantsville, UT 2003 8.39  17.28 22.36 25.15 10.66 10.92 6.6 2.55 2.29 28.21 41.41  
Grantsville, UT 2004 9.9 39.12 9.14 38.35 26.67 15.75 13.46 7.63 25.91 74.41 24.89 8.14 293.37 
Grantsville, UT 2005 41.16 28.95 29.96 64.25 63.76 24.13  5.85 5.33 8.13 16.76 18.03  
Grantsville, UT 2006 26.41 14.46 36.83 50.28 15.24 9.65 8.62 26.15 36.33 41.65 15.75 21.85 303.22 
Grantsville, UT 2007 16.5 14.47 30.74 5.58 19.31 10.41 30.98 9.65 14.73 39.11 4.06 24.63 220.17 
Garfield, UT 2000 51.82 60.96 38.33 40.9 44.96 12.45 26.16 84.32 43.94 57.4 44.7 37.33 543.27 
Garfield, UT 2001  35.04 41.66 49.03 4.31 43.43 92.2 18.8 3.3 14.22 100.58 56.38  
Garfield, UT 2002 17.28 6.85 45.98 86.12 34.29 8.13 5.83 7.88 46.48 30.74  11.17  
Garfield, UT 2003 14.22 27.68 26.93 37.33 39.62 13.72 19.05 8.13  11.43 50.31 64.25  
Garfield, UT 2004 10.42 57.15 26.15 83.3 34.8 10.41 6.1 7.87 53.08 108.7 29.2 9.4 436.58 
Garfield, UT 2005 46.47 48.25  76.95 123.45 65.03 4.32 10.92 9.14 33.53 29.97 32.26  
Garfield, UT 2006 37.09 18.53 57.39 69.35 29.97 22.6 15.23 35.56 72.89 44.45 31.99 25.65 460.7 
Garfield, UT 2007 23.87 39.87 28.96 11.43 35.06 30.48 27.43 7.88 46.22 56.14 10.92 50.8 369.06 
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Table A.6  Monthly and annual mean temperature (°C) measured by regional climate stations nearest to the Onaqui site. 
Blank cells indicate missing data. 
 
 

Station Year  Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec 
 

Annual 
Tooele, UT 2000 2.5 4.7 6.2 13.2 17.1 22.8 27.6 26.9 19.1 11.8 0.6 0.9 12.8 
Tooele, UT 2001 2.4 1.7 7.4 10.7 18.2 22.2 26.1 26.7 22 14.3 6.2 2.2 12.6 
Tooele, UT 2002 1.5 0.6 4.2 11.5 16.2 22.8 28.1 24.9 19.1 10.1 3.6 1.8 11.7 
Tooele, UT 2003 4.2 2.4 7.2 10.2 16.1 22.3 29.1 27 19.9 15.3 2.5 1.1 13.1 
Tooele, UT 2004 4.6 1.3 9.2 11.1 16.1 21.4 25.7 23.7 18.7 12 3.4 0.2 11.3 
Tooele, UT 2005 0.3 1.4 5.9 10 14.9 18.9 27.4 24.8 18.8 12.2 5.1 0.2 11.7 
Tooele, UT 2006 1.6 1.2 4.9 11.9 17.7 23.6 27.9 25.1 17.7 10.4 5.6 0.6 12.3 
Tooele, UT 2007 4.3 3.3 8.2 11.7 18.2 23.5 28.3 26.6 19.2 11.2 6 1.9 12.5 
Grantsville, UT 2000 1.4 3.4 4.5 11 15.4 21.6 26.2 25.9 17.2 10.9 0.1 0.6 11.4 
Grantsville, UT 2001 3.5 0.3  9.1 16.8 20.5 25.6 24.9 20.2 12.5 5.4 3.5  
Grantsville, UT 2002 2.9 2.9 2.7 9.9 14 21.4 27 23.5 18.2 9.3 2.3 0.6 10.3 
Grantsville, UT 2003 2.5  6.4 9.5 14.9 20.6 28.2 26 18.1 13.7 2 0.5  
Grantsville, UT 2004 5.9 2.7 7.5 10.8 15.2 20.8 25.3 23.4 17.5 11.6 3.1 1 10.5 
Grantsville, UT 2005 0.1 0.3 5.2 8 14.3 18.7  24.3 17.3 11.2 4.6 1.3  
Grantsville, UT 2006 0 0.2 4 10.3 16 22.3 27.4 23.8 16.1 9.6 4.4 2.2 11 
Grantsville, UT 2007 7.1 1.7 6.7 9.8 16.5 21.5 27.5 25.7 18.3 9.8 4.6 2.6 11 
Garfield, UT 2000 3.1 5.1 6.7 14 18.3 24.4 28.9 27.6 20.7 13.2 2 1.4 13.8 
Garfield, UT 2001  2.6 8.8 11.6 19.7 23.6 27.9 27.8 22.8 15.1 7.5 0.6  
Garfield, UT 2002 1 0.7 5.5 12.4 17.4 24.1 29.7 26.3 20.4 11.5  2.6  
Garfield, UT 2003 4.3 2.9 8.7 11.3 17.9 23.4 30.3 27.8  15.4 3.5 1.8  
Garfield, UT 2004 3.9 1.2 9.8 12.4 17.2 22.8 27.6 24.7 19.3 12.5 4.4 0.9 12.2 
Garfield, UT 2005 0.5 1.9  10.7 15.9 20.4 28.7 26.5 19.4 12.8 5.9 0.2  
Garfield, UT 2006 1.2 1.5 5.3 12.7 18.2 24.6 29.1 26.3 18.3 11.3 6.1 0.2 12.9 
Garfield, UT 2007 4 3.5 8.7 12.7 18.5 24.4 30 27.9 20.4 11.6 6.5 1.4 13.2 
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